3rd National Forum on Climate Change

5 – 7 November 2013, Cambodia

"Taking Action for Sustainable Development in the Changing Climate"

Climate Change Climate Financing 🛔 Renewable Energy Agriculture Education Mainstreaming Health ŤŤ 9 Biodiversity lange 0 Forestry Low Carbon Society (B)(B) Green Growth

Update on Climate Change Science: Causes and Impacts

Mozaharul Alam

5 November 2013

Ja (1)

(4)

About Presentation

- Key signs of climate change
 - Temperature change
 - Rainfall variation
 - Sea level change
- Key finds of IPCC AR5 Working Group | report 2013

Temperature – observed changes

- The globally averaged combined land and ocean surface temperature data show a warming of 0.85
 [0.65 to 1.06] °C 3, over the period 1880–2012
- The total increase between the average of the 1850– 1900 period and the 2003– 2012 period is 0.78 [0.72 to 0.85] °C

ite to combat CLIMATE CHANGE

Temperature – observed changes

Source: IPCC, 2013

WUNite to combat CLIMATE CHANGE

Sea level rise – observed changes

- Over the period 1901–2010, global mean sea level rose by 0.19 [0.17 to 0.21] m
- It is very likely that the mean rate of global averaged sea level rise was
 - 1.7 [1.5 to 1.9] mm/yr between 1901 and 2010,
 - 2.0 [1.7 to 2.3] mm/yr between 1971 and
 - 2010 and 3.2 [2.8 to 3.6] mm/yr between 1993 and 2010

ite to combat CLIMATE CHANGE

CO₂ concentration – observed changes

- The atmospheric concentrations of the greenhouse gases carbon dioxide (CO₂), methane (CH₄), and nitrous oxide (N₂O) have all increased since 1750 due to human activity.
- In 2011, the concentrations of these greenhouse gases were

Nite to combat CLIMATE CHANGE

- CO₂ 391 ppm, exceeded the preindustrial levels by about 40%
- CH₄ 1803 ppb, exceeded the preindustrial levels by about 150%
- N₂O 324 ppb, exceeded the preindustrial levels by about 20%

Temperature – future

 Increase of global mean surface temperatures for 2081–2100 relative to 1986–2005 is projected to likely be in the ranges of 0.3°C to 1.7°C (RCP2.6), 1.1°C to 2.6°C (RCP4.5), 1.4°C to 3.1°C (RCP6.0), 2.6°C to 4.8°C (RCP8.5)

Source: IPCC, 2013

- The Arctic region will warm more rapidly than the global mean
- Mean warming over land will be larger than over the ocean

Temperature – future

Source: IPCC, 2013

Precipitation - future

- Changes in the global water cycle in response to the warming over the 21st century will not be uniform
- The contrast in precipitation betwee wet and dry regions and between wet and dry seasons will increase, although there may be regional exceptions

Ocean warming – future

- The global ocean will continue to warm during the 21st century. Heat will penetrate from the surface to the deep ocean and affect ocean circulation.
- The strongest ocean warming is projected for the surface in tropical and Northern Hemisphere subtropical regions.
- Best estimates of ocean warming in the top one hundred meters are about 0.6°C (RCP2.6) to 2.0°C (RCP8.5)
- about 0.3°C (RCP2.6) to 0.6°C (RCP8.5) at a depth of about 1000 m by the end of the 21st century.

Nite to combat CLIMATE CHANGE

Sea level rise – future

- Global mean sea level rise for 2081–2100 relative to 1986–2005 will likely be in the ranges of
- 0.26 to 0.55 m for RCP2.6,
 0.32 to 0.63 m for RCP4.5,
 0.33 to 0.63 m for RCP6.0,
 0.45 to 0.82 m for RCP8.5
- For RCP8.5, the rise by the year 2100 is 0.52 to 0.98m, with a rate during 2081–2100 of 8 to16 mm/yr

Table SPM.2 [TABLE SUBJECT TO FINAL COPYEDIT]

		2046-2065			2081-2100	
Variable	Scenario	mean	likely range °	mean	likely range ^c	
Global Mean Surface Temperature Change (°C) ^a	RCP2.6	1.0	0.4 to 1.6	1.0	0.3 to 1.7	
	RCP4.5	1. <mark>4</mark>	0.9 to 2.0	1.8	1.1 to 2.6	
	RCP6.0	1.3	0.8 to 1.8	2. <mark>2</mark>	1.4 to 3.1	
	RCP8.5	2.0	1.4 to 2.6	3.7	2.6 to 4.8	
		mean	likely range ^d	mean	likely range ^d	
Global Mean Sea Level Rise (m) ^b	RCP2.6	0.24	0.17 to 0.32	0.40	0.26 to 0.55	
	RCP4.5	0.26	0.19 to 0.33	0.47	0.32 to 0.63	
	RCP6.0	0.25	0.18 to 0.32	0.48	0.33 to 0.63	
	RCP8.5	0.30	0.22 to 0.38	0.63	0.45 to 0.82	

WUNite to combat CLIMATE CHANGE

Southeast Asia: Temperature changes – Dec-Jan

Temperature change Southeast Asia (land) December-February

Southeast Asia: Temperature changes – Dec-Jan

[°C]

Source: IPCC, 2013

Southeast Asia: Temperature changes – Jun-Aug

Southeast Asia: Temperature changes – Jun-Aug

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 3 4 5 7 9 11

Source: IPCC, 2013

Southeast Asia: Precipitation changes – Oct-Mar

Southeast Asia: Precipitation changes – Oct-Mar

Source: IPCC, 2013

Southeast Asia: Precipitation changes – Apr-Sep

Precipitation change Southeast Asia (land) April-September RCP8.5 RCP6.0 60 60 RCP4.5 RCP2.6 40 40 historical 20 20 * 0 0 -20 -20 -40 -40 1900 1950 2000 2050 2100 2081-2100 mean Precipitation change Southeast Asia (sea) April-September RCP8.5 60 60 RCP6.0 RCP4.5 RCP2.6 40 40 historical 20 20 % 0 0 -20 -20 -40 -40 2000 2050 1900 1950 2100 2081-2100 mean Source: IPCC, 2013 UNite to combat CLIMATE CHANGE

Southeast Asia: Precipitation changes – Apr-Sep

Source: IPCC, 2013

[%]

CC in AP Region – visible & challenge is big

Mitigation and Adaptation: Inter-linkages

Source: Modified, IPCC, 2007

UNEP works in the region...

Climate Change

- Support to develop low emission mitigation strategies, plans, policies. measures
- Support to set up and implement sectoral initiatives on renewable energy & energy efficiencv
- Support to address UNFCCC monitoring and reporting requirements
- Climate technology partnerships and networks
- Facilitate access to finance for clean technologies

Types of Services and Products **Mitigation** Adaptation Facilitate Reduce transition to vulnerability low carbon and build **CC-AP** societies and resilience to access to CC СС Region finance **REDD+** Support national processes for implementing sustainable forest management including *REDD+ readiness*

- Develop and national REDD+
 - strategies Tools development for promoting multiple benefits, Green Economy and Green Investment
- Partnerships for land

- Support to develop and pilot methods and tools focusing on Ecosystem-based Adaptation (EbA)
 - Support to implement EbA demonstration and scale up
 - Support to integrate adaptation into sectoral plans
 - Support to address UNFCCC adaptation planning and reporting requirements
 - Facilitate access to adaptation finance
 - Assessment and policy advice
 - Capacity enhancement of key actors
 - Integration into development
 - Access to finance
 - Knowledge network

Climate Change

Asia Pacific Adaptation Network (APAN): Adaptation Forum become a flagship event in the Asia and the Pacific Region for adaptation practitioners

Climate Technology Network and Finance Centre: Building partnership among technology centre to support technology transfer

Ecosystem-based Adaptation: emerging adaptation concept promoted and building wider partnership in Nepal focusing on mountain ecosystem

NIE accreditation support programme: challenges recognized by the key national actors and support required for direct access to Adaptation Fund Finance Access to Clean Technology: Partnership build with local financial institutes to promote cleaner technology at end user level

Network of Climate Change Focal Points Office: Established climate change focal points and expert network in the region

Thank You !

Mozaharul Alam Regional Climate Change Coordinator UNEP Regional Office for Asia and the Pacific Bangkok, Thailand Email: mozaharul.alam@unep.org

CAMBODIA CLIMATE CHANGE ALLIANCE

