PHNOM PENH GREEN CITY
STRATEGIC PLAN 2017 - 2026
And List of Priority Green City Investment Projects for Phnom Penh

Executive Summary
FOREWORD BY MINISTER OF ENVIRONMENT

In the face of pressing economic and environmental challenges around the globe, the “Green Growth” model for development has gained increasing momentum both globally, and in the Kingdom of Cambodia. The Royal Government of Cambodia (RGC) has put Green Growth at the centre of its economic and social development planning, and rely on Green Growth a fundamental means for achieving sustainable development, which contributes to upholding stable economic growth, improving the quality of environment and reducing poverty.

The development of green and sustainable cities in Cambodia is a key policy priority for the National Council for Sustainable Development (NCSD), Ministry of Environment (MoE). Cities are the center of economic activity and propel job creation and GDP growth. Cities are also the center of resource consumption, whereby energy, water and other natural resources are utilized by industry and consumers to drive economic development. Cambodia has an opportunity to accelerate its growth potential further through green city development; harnessing the opportunities of garment sector, tourism and the real estate construction boom.

The Phnom Penh Green City Strategic Plan 2017-2026, provides a practical overview of the current situation in Phnom Penh, including the current Green Growth challenges and opportunities in the city. It provides some strategies for achieving an overarching green city vision and mission, and priority actions for eight key urban areas. Moreover, the Strategic Plan provides us with a summary table of the 48 prioritized green investment projects, which are linked to the existing strategies and master plans of Phnom Penh.

The adoption of the Phnom Penh Green City Strategic Plan 2017-2026 by the Royal Government of Cambodia paves the way for the institutionalization and policy arrangement for the implementation of the priority actions and 48 green city projects. It needs our collective actions to move this forward from designing to planning and finally to implementing it.

I strongly encourage active engagement from both the public and private sector, including banking institutions, to work together to achieve our common goals in green city development in Phnom Penh. I firmly believe that this will demonstrate positive impacts for Cambodia’s capital city, which we can then work together to replicate in other cities across Cambodia.

Finally, I would like to extent my profound gratitude and sincere thanks to those who have provided support directly or indirectly to the development of this important document, especially the NCSD and the Global Green Growth Institute (GGGI). This is the kind of practical document that we, the Royal Government of Cambodia, need to have in hand in order to embark on our journey to promote green growth in Cambodia.

H.E. Dr. Say Samal
Minister of Environment
Chair of the National Council for Sustainable Development
Royal Government of Cambodia
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACLEDA</td>
<td>Association of Cambodian Local Economic Development Agencies</td>
</tr>
<tr>
<td>ADB</td>
<td>Asian Development Bank</td>
</tr>
<tr>
<td>AFD</td>
<td>Agence Française de Développement</td>
</tr>
<tr>
<td>BAU</td>
<td>Business-as-usual</td>
</tr>
<tr>
<td>CCCA</td>
<td>Cambodia Climate Change Alliance</td>
</tr>
<tr>
<td>CDC</td>
<td>Council for the Development of Cambodia</td>
</tr>
<tr>
<td>CDM</td>
<td>Clean Development Mechanism</td>
</tr>
<tr>
<td>DFAT</td>
<td>Department of Foreign Affairs and Trade, Australia</td>
</tr>
<tr>
<td>DPWT</td>
<td>Department of Public Works and Transport</td>
</tr>
<tr>
<td>EAC</td>
<td>Electricity Authority of Cambodia</td>
</tr>
<tr>
<td>EDC</td>
<td>Electricité du Cambodge</td>
</tr>
<tr>
<td>EE</td>
<td>Energy efficiency</td>
</tr>
<tr>
<td>ESCO</td>
<td>Energy service company</td>
</tr>
<tr>
<td>EUROCHAM</td>
<td>European Chamber of Commerce, Cambodia</td>
</tr>
<tr>
<td>FDI</td>
<td>Foreign direct investment</td>
</tr>
<tr>
<td>GEF</td>
<td>Global Environment Facility</td>
</tr>
<tr>
<td>GGGI</td>
<td>Global Green Growth Institute</td>
</tr>
<tr>
<td>GHG</td>
<td>Greenhouse gas</td>
</tr>
<tr>
<td>GIZ</td>
<td>Gesellshaft fur Internationale Zusammenarbeit</td>
</tr>
<tr>
<td>GMAC</td>
<td>Garment Manufacturers Association in Cambodia</td>
</tr>
<tr>
<td>GWh</td>
<td>Gigawatt hour</td>
</tr>
<tr>
<td>IFC</td>
<td>International Finance Corporation</td>
</tr>
<tr>
<td>IFI</td>
<td>International financial institution</td>
</tr>
<tr>
<td>INDC</td>
<td>Intended Nationally Determined Contribution</td>
</tr>
<tr>
<td>IPCC</td>
<td>Intergovernmental Panel on Climate Change</td>
</tr>
<tr>
<td>JICA</td>
<td>Japan International Cooperation Agency</td>
</tr>
<tr>
<td>KHR</td>
<td>Cambodian riel (currency)</td>
</tr>
<tr>
<td>KOICA</td>
<td>Korea International Cooperation Agency</td>
</tr>
<tr>
<td>KTOE</td>
<td>Kilotonne of oil equivalent</td>
</tr>
<tr>
<td>kWh</td>
<td>Kilowatt hour</td>
</tr>
<tr>
<td>LCDF</td>
<td>Least Developed Countries Fund</td>
</tr>
<tr>
<td>LPG</td>
<td>Liquefied petroleum gas</td>
</tr>
<tr>
<td>MCA</td>
<td>Multiple criteria analysis</td>
</tr>
<tr>
<td>MEF</td>
<td>Ministry of Economy and Finance</td>
</tr>
<tr>
<td>MLMUPC</td>
<td>Ministry of Land Management, Urban Planning and Construction</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>MME</td>
<td>Ministry of Mines and Energy</td>
</tr>
<tr>
<td>MOE</td>
<td>Ministry of Environment</td>
</tr>
<tr>
<td>MOI</td>
<td>Ministry of Interior</td>
</tr>
<tr>
<td>MOIH</td>
<td>Ministry of Industry and Handicrafts</td>
</tr>
<tr>
<td>MOMW</td>
<td>Ministry of Women’s Affairs</td>
</tr>
<tr>
<td>MOWRAM</td>
<td>Ministry of Water Resources and Meteorology</td>
</tr>
<tr>
<td>MPWT</td>
<td>Ministry of Public Works and Transport</td>
</tr>
<tr>
<td>MW</td>
<td>Megawatt</td>
</tr>
<tr>
<td>NCSD</td>
<td>National Council for Sustainable Development</td>
</tr>
<tr>
<td>NSDP</td>
<td>National Strategic Development Plan</td>
</tr>
<tr>
<td>OECD</td>
<td>Organisation for Economic Cooperation and Development</td>
</tr>
<tr>
<td>PPCH</td>
<td>Phnom Penh Capital Hall</td>
</tr>
<tr>
<td>PPSEZ</td>
<td>Phnom Penh Special Economic Zone</td>
</tr>
<tr>
<td>SEZ</td>
<td>Special economic zone</td>
</tr>
<tr>
<td>SME</td>
<td>Small- and medium-sized enterprise</td>
</tr>
<tr>
<td>UNDP</td>
<td>United Nations Development Programme</td>
</tr>
<tr>
<td>UNEP</td>
<td>United Nations Environment Programme</td>
</tr>
<tr>
<td>UNESCO</td>
<td>United Nations Educational, Scientific and Cultural Organization</td>
</tr>
<tr>
<td>UNICEF</td>
<td>United Nations Children’s Emergency Fund</td>
</tr>
<tr>
<td>UNIDO</td>
<td>United Nations Industrial Development Organization</td>
</tr>
</tbody>
</table>
ACKNOWLEDGEMENTS

The Green City Strategic Plan for Phnom Penh is the result of the collaboration between the Department of Green Economy of the National Council for Sustainable Development (NCSD), Phnom Penh Capital Hall (PPCH), the Global Green Growth Institute (GGGI), and its consultant team from the International Centre for Environmental Management (ICEM).

The preparation of the Green City Strategic Plan for Phnom Penh was made possible by the contributions of a broad range of stakeholders, including the relevant ministries of the Royal Government of Cambodia (RGC), representatives of the PPCH, Phnom Penh district authorities, development partners, community-based organizations and non-government organizations, academia, and private sector representatives which share the concerns of the national and local institutions for the sustainable future of the capital city, and which represent the viewpoints of residents and of various economic and development actors present in Phnom Penh.

The following Cambodian officials played important leadership roles in supporting and facilitating the preparation of the Green City Strategy for Phnom Penh:

- H.E. Dr. Tin Ponlok, Secretary-General, National Council for Sustainable Development
- H.E. Ken Sereyrotha, Deputy Secretary-General, National Council for Sustainable Development
- H.E. Dr. Ieng Aunny, Deputy Governor, Phnom Penh
- Mr. Taing Meng Eang, Director, Department of Green Economy, General Secretariat for the National Council for Sustainable Development
- Mr. Khun Sovithea, Deputy Director, Department of Green Economy, General Secretariat for the National Council for Sustainable Development
- Mr. Chan Puthearath, Technical Officer, Department of Green Economy, General Secretariat for the National Council for Sustainable Development
- Mr. Sat Sitak, Technical Officer, Department of Green Economy, General Secretariat for the National Council for Sustainable Development
- Mr. Lim Vichet, Deputy Director, Department of Administration, Phnom Penh Capital Hall
- Mr. Chiek Ang, Former Director of the Department of Environment, Phnom Penh Capital Hall.

The following RGC ministries were engaged in the drafting of the Green City Strategic Plan (see Annex B for a complete list of stakeholder consulted) through coordination by the NCSD:

- Ministry of Economy and Finance (MEF)
- Ministry of Interior (MOI)
- Ministry of Planning (MOP)
- Ministry of Land Management, Urban Planning and Construction (MLMUPC)
- Ministry of Environment (MOE)
- Ministry of Public Works and Transport (MPWT)
- Ministry of Industry and Handicrafts (MOIH)
- Ministry of Mines and Energy (MME)
- Ministry of Water Resources and Meteorology (MOWRAM)
- Ministry of Women’s Affairs (MOWA).

The Global Green Growth Institute (GGGI) staff members who supervised the preparation of the Green City Strategy for Phnom Penh are:
Fiona Lord, Country Representative for Cambodia, GGGI
Pheakdey Heng, Policy Lead, GGGI
James Seong-Cheol Kang, Principal Transport Specialist, GGGI
Okju Jeong, Principal Urban Development Specialist, GGGI
Chantharo Khan, Project Officer, GGGI

An ICEM team comprising international and national experts worked on the project from October 2015 to May 2016 and prepared the Green City Strategic Plan for Phnom Penh. Its members are:

- Anthony Gad Bigio, Team Leader, Green Urban Planning Specialist
- John Sawdon, Green Growth Economist
- Wayne Stone, Urban Vulnerability Expert
- Sok-Tharath Chreung, Green Finance and Investment Specialist
- Vin Spoann, Green Infrastructure Specialist
- Kong Pagnarith, Green Energy Specialist
- Chhun Bunlong, Urban Mapping Specialist
Contents

FORWARD BY MINISTER OF ENVIRONMENT .. 2
FORWARD BY THE GOVERNOR OF PHNOM PENH CITY .. 3
List of Abbreviations .. 3
Acknowledgements .. 4

1 INTRODUCTION .. 5

2 VISION & MISSION FOR GREEN CITY DEVELOPMENT .. 11

3 GOALS AND OBJECTIVES FOR GREEN CITY DEVELOPMENT ... 11
 3.1 Overall Green City Goals ... 11
 3.2 Green City Sectoral Objectives .. 11

4 STRATEGIC ANALYSIS .. 14
 4.1 Phnom Penh master plan on land use 2035 ... 14
 4.2 Phnom Penh Urban Transport Master Plan 2035 ... 16
 4.3 Overarching policy framework for Green City Development in Cambodia ... 17
 4.4 Baseline Assessment of the Urban Context in PHNOM PENH .. 18
 4.5 Review of the key urban sectors for urban green growth .. 20
 4.5.1 Urban Planning .. 21
 4.5.2 Urban Vulnerability ... 24
 4.5.3 Energy ... 28
 4.5.4 Transport .. 33
 4.5.5 Built Environment .. 36
 4.5.6 Manufacturing .. 38
 4.5.7 Solid Waste Management .. 41
 4.5.8 Public Space and Cultural Heritage ... 45

5 GREEN CITY DEVELOPMENT PRIORTY ACTIONS ... 48
 5.1 Urban Planning Priority Actions: .. 48
 5.2 Urban Vulnerability Priority Actions: .. 48
 5.3 Energy Priority Actions: ... 49
 5.4 Transport Priority Actions: ... 49
 5.5 Built Environment Priority Actions: ... 49
 5.6 Manufacturing Priority Actions: .. 50
 5.7 Solid Waste Management Priority Actions: .. 50
 5.8 Public Spaces and Cultural Heritage Priority Actions: ... 51

6 GREEN CITY DEVELOPMENT PROJECTS .. 50

7 GREEN GROWTH SCENARIO .. 72
 7.1 Business-as-usual scenario ... 73
7.2 Piloting Green Growth Scenario .. 74
7.3 Mainstreaming Green Growth Scenario .. 75
8 Implementation arrangements .. 77
 8.1 Advisory Board .. 77
 8.2 Technical Working Group .. 78
 8.3 Financial Resources ... 78
 8.4 Monitoring and Evaluation .. 79
Bibliography .. 80
 ANNEX A: LIST OF STAKEHOLDERS CONSULTED 83
1 INTRODUCTION

The Green City Strategic Plan for Phnom Penh provides a roadmap for Cambodian policymakers, local administrators and their national and international development partners in order to pursue the implementation of urban green growth in the context of tackling climate change, while simultaneously pursuing economic development, poverty alleviation and social inclusion. The target audience of this document is therefore multiple stakeholders, and includes national and municipal officials, as well as representatives of private sector, development agencies, non-governmental organizations and academia.

The Green City Strategic Plan for Phnom Penh is accompanied by a Green City Strategic Planning Methodology, which is a step-by-step guide for municipalities, district and commune officials and the relevant stakeholders of each municipality across Cambodia seeking to embark on the process of transforming their cities towards green growth. The methodology supports cities to assess and prioritize green growth options (investment projects and policy reforms) for implementation. This methodology holistically considers all aspects of green urban development, such as low-carbon development, climate resilience, resource efficiency, as well as social inclusion and poverty alleviation. The methodology has ten steps as outlined below:

- Step 1: Establishment of green city strategic planning governance arrangements
- Step 2: Baseline assessment of the urban context
- Step 3: Setting a green city shared vision, mission and urban development goals
- Step 4: Review of the key urban sectors for urban green growth
- Step 5: Establishing urban green growth priority objectives and actions for the key sectors
- Step 6: Identification of potential green city development projects
- Step 7: Prioritizing green city development projects
- Step 8: Envisaging urban green growth scenarios
- Step 9: Preparing the list of priority green city projects
- Step 10: Implementation arrangements for the Green City Strategic Plan.

Phnom Penh city is the first city in Cambodia to apply this Green City Strategic Planning Methodology, and has developed the Green City Strategic Plan for Phnom Penh, as an example for other cities to follow. The Green City Strategic Plan for Phnom Penh is designed to support the implementation of the Phnom Penh Master Plan for Land Use 2035, through the design of specific green growth actions related to the strategic priorities identified in the Master Plan. Moreover, it is will support the achievement of the strategic goals set within the Phnom Penh Urban Transport Masterplan and the Phnom Penh Masterplan for Drainage and Sewerage.

A comprehensive Green City Strategic Plan for Phnom Penh has been prepared, including project description notes for each of the 48 green city projects identified and detailed analysis to support their selection, prioritization and implementation, alongside detailed sector-based analysis of green growth constraints and opportunities in Phnom Penh. This Executive Summary provides a summary of the key elements of the Green City Strategic Plan, including the key actions and priority projects to be undertaken for green growth in Phnom Penh.
Phnom Penh Municipal Master Plan on Land Use 2035

Vision: Phnom Penh is a competitive political, economic, business and cultural center of Cambodia with sustainable and equitable development.

Urban Transport Master Plan 2035

Goal: To solve the current transport problems/issues and support the 2035 Urban Vision and Urban Structure.

Phnom Penh Master Plan for Drainage and Sewerage 2035

Goal: to improve sewerage treatment and drainage management in the metropolitan area of Phnom Penh.

Phnom Penh Green City Strategic Plan 2017-2026

Vision: By 2026, Phnom Penh will become a clean, green and competitive city, offering a safe and quality lifestyle to its residents.

Goals
- De-couple economic growth from environmental impacts
- Increase social inclusion, reduce poverty levels, and improve urban welfare
- Provide urban resilience for all citizens to natural, climatic and other risks
- Ensure urban competitiveness and attractiveness to businesses

Figure 1: The linkages between the Phnom Penh Green City Strategic Plan and Phnom Penh Municipal Master Plan on Land Use 2035
2 VISION & MISSION FOR GREEN CITY DEVELOPMENT

To achieve green city development, Phnom Penh has identified the following vision and mission:

Vision: By 2026, Phnom Penh will become a clean, green and competitive city offering a safe and quality lifestyle to its residents.

Mission: To guide planning of Phnom Penh and promote public and private investment to ensure effective and sustainable economic and social development of the city.

3 GOALS AND OBJECTIVES FOR GREEN CITY DEVELOPMENT

To achieve the Vision and Mission for Green City Development, Phnom Penh has identified the following goals and objectives for urban green growth;

3.1 OVERALL GREEN CITY GOALS

1. Decouple economic growth from environmental impacts
2. Increase social inclusion, reduce poverty levels, and improve urban welfare
3. Provide urban resilience for all citizens to natural, climatic and other risks
4. Ensure urban competitiveness and attractiveness to businesses.

3.2 GREEN CITY SECTORAL OBJECTIVES

1. Urban Planning Objectives
 1.1 Implementation of the Phnom Penh Municipal Master Plan on Land Use 2035
 (percentage implemented)
 1.2 Detailed Land-use map and land-use zoning
 (percentage of the city coverage)
 1.3 Sustainability of the seven satellite city projects scheduled for completion by 2030
 (solid and liquid waste management systems in place, and compliance with green building standards)

2. Urban Vulnerability Objectives
 2.1 Protect the population of Phnom Penh from extreme flood events
 (percentage of the population negatively affected)
 2.2 Restore to 2003 levels the coverage of natural lakes and wetlands in the city, which serve as natural flood control and wastewater management systems
 (surface of natural lakes and wetlands in hectares or acres)
 2.3 Create or restore green and blue corridors throughout the city
 (number of corridors)
 2.4 Secondary treatment of wastewaters generated in inner city areas
 (millions of cubic meters, as percentage of the total)
2.5 Households in peri-urban areas use improved and secure sanitation systems that will prevent pollution dispersion during high rain and flooding events

(number of peri-urban households with improved and secure sanitation systems with wastewater treatment, as percentage of total)

3. Energy Sector Objectives

3.1 Increase the share of solar energy in electricity supply

(percentage of increase from the current < 1%)

3.2 Reduction of electricity consumption in commercial and service companies through the introduction of energy efficiency measures

(percentage of reduction vs. current consumption baseline)

3.3 Reduction of electricity consumption in households through the introduction of energy efficiency measures

(percentage of reduction vs. current consumption baseline)

3.4 Municipal and other government buildings with suitable roofs have solar PV installed

(number of buildings retrofitted vs. total)

4. Transport Sector Objectives

4.1 Reduce transport sector greenhouse gas emissions

(percentage reduction over current baseline)

4.2 Bus-based public transportation system in place, covering key transportation corridors in the city

(percentage of total modal share)

4.3 Reduce traffic accidents

(percentage of reduction vs. current yearly baseline)

4.4 Reduce traffic congestion

(increase in average vehicle speed vs. current baseline)

5. Built Environment Objectives

5.1 Adoption of green building standards for buildings to be constructed from 2020 onward

(number of green building projects vs. number of building permits requested)

5.2 Reduce energy use in existing buildings

(percentage reduction vs. current baseline)

5.3 Low-income housing units designed or retrofitted to be resistant to natural disasters

(number of upgraded units vs. total urban housing stock)

6. Manufacturing Objectives

6.1 Develop industrial zoning provided with supportive green infrastructure
6.2 Reduce water pollution from the manufacturing sector
 (percentage of total volume of waste water treated)
6.3 Increase energy efficiency in manufacturing industry
 (reduction of KW consumed per value of outputs)
6.4 Carry out energy efficiency audits and put in place energy efficiency management plans for large manufacturing plants
 (number of audits and management plans vs. total number of large plants)
6.5 Large manufacturing companies have water use audits conducted and water use management plans put in place
 (number of audits and management plans vs. total number of large plants).

7. Solid Waste Management Objectives
 7.1 Expand quality solid waste management collection services
 (number of districts covered)
 7.2 Reduce organic waste going to the landfill or incinerator
 (percentage of total organic waste)
 7.3 Waste separation to enable recycling by households, markets and commercial enterprises
 (percentage of separated waste vs. total)
 7.4 Implementation of the 4R principle (reduce, reuse, repair, recycle)
 (percentage reduction in volume of collected waste).

8. Public Spaces and Cultural Heritage Objectives
 8.1 Increase the green canopy coverage of the city
 (number of new native trees planted)
 8.2 Increase public green space in the city
 (number of hectares from current baseline of 70 ha)
 8.3 Develop a strategic plan to preserve urban cultural heritage
 (number of historic buildings inventoried and protected)
 8.4 Increase in tourism as a result of improved cultural heritage management
 (number of tickets sold at key urban sites).
4 STRATEGIC ANALYSIS

4.1 PHNOM PENH MASTER PLAN ON LAND USE 2035

In December 2015, the Council of Ministers approved a new master plan for managing urban development in Phnom Penh over the next 20 years. Phnom Penh Master Plan on Land Use 2035 aims to deal with population growth and a continued construction boom as the capital’s population grows by more than a third to a projected 3 million by 2020. According to the plan, Phnom Penh’s vision for 2035 is “to become a competitive political, economic, business and cultural center of Cambodia with sustainable and equitable development”.

The Master Plan on Land Use 2035 articulated three overarching goals to realize the vision:

1) To set the land use direction to ensure its potential for efficiency, sustainable, and equity that will contribute to Cambodia’ socioeconomic development, food security, and clean environment

2) To set the development direction for Phnom Penh, balancing with the development of other smaller cities and provincial towns

3) To empower the city’s identity and develop its competitiveness with other cities in the region, which will provide Phnom Penh with more technical and financial access.

The Master Plan for Land Use 2035 also proposes five main strategies for the development, improvement, and expansion of Phnom Penh so that the city will response to the need of growing urban population and challenges:

• Strategy 1: Phnom Penh to become a core centre for development
• Strategy 2: Phnom Penh to become an international standard city
• Strategy 3: Development of a reserve for the development of necessity physical Infrastructure
• Strategy 4: Urban planning for Phnom Penh to become a metropolitan city
• Strategy 5: Development of a special area for cultural heritage and city’s view.

Table 1: Prioritized actions under the Phnom Penh Municipal Master Plan on Land Use 2035

<table>
<thead>
<tr>
<th>Action Plan 1: Dissemination of the Master Plan on Land Use 2035</th>
</tr>
</thead>
<tbody>
<tr>
<td>o Organize workshops to disseminate the Master Plan to technical working groups, investors, and Cambodian people as a whole</td>
</tr>
<tr>
<td>o Make the Master Plan available for the public through PPCH’s website.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Action Plan 2: Potential projects that need to take immediate actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>o Set regulation and zoning, reserve for enlargement of road, railway, and urban sewage system</td>
</tr>
<tr>
<td>o Create zoning for railway station reserve specifically for merchandise, and zoning for a big dry port at Samroung Por Sen Chey area</td>
</tr>
<tr>
<td>o Approve the railway projects to connect from Phnom Penh to Ho Chi Minh city</td>
</tr>
<tr>
<td>o Increase the size of the runways of the Phnom Penh International Airport</td>
</tr>
</tbody>
</table>
Build a dam and concrete shores of the Bassac river
Standardize buildings in some areas such as Chbar Ampov, Boeung Kroper (Crocodile Lake), Boeung Pong Peay and area in front of Tonle Bassac and Boeng Kok
Identify a new site for waste dumping, improve the current waste dumping site at Dangkor area by investing in waste recycle factories, and to design a garden along waste dumping site in Mean Chey area
Identify eco zone in Preak Phnov
Promote the conservation and improvement of historical centers.

Action Plan 3: Rules and regulations for urbanization
Create map and zoning of land use in Phnom Penh
Develop plan to the expand the city to the Northern and Western areas
Install the water treatment basin at Cheung Ek lake.
Create mapping of public area improvement (lake, canal, road, railway, airport, port, and green areas)
Create mapping of the priority areas for development
Standardize the height of buildings
Create mapping of the historical and heritage buildings in Phnom Penh
Create mapping and master planning of a spectacular view area, maintain trees and design of landscape viewing areas with publically-installed tools at the end of Chroy Changva area.

Action Plan 4: Continue the current development projects and public investments
Develop and build satellite cities such as Koh Pich, Chroy Changva, KamCo.
Continue the development of Olympic satellite city in the North of Phnom Penh.
Continue the development of Boeng Kok area and roads within the area
Continue the development of dry port and Asian station at Samroung area in Por Sen Chey district
Continue the development of ring road within the city (connect from Roesey Keo to Sen Sok and to Por Sen Chey)
Build roads along national roads (National roads No. 1, 2, 3, 4, 5) to reduce the traffic congestion at city’s entry points
Build of flyovers at big roundabouts
Build roads in peri-urban area
Build waste-water treatment basin at Choeng Ek area and installation of sewages system in Phnom Penh
Strengthen the implementation of Circulation 03 S.R on the Resolution of Temporary Buildings on Public Land, which were used illegally, in the city centers and urban areas
Improve the economic ability of potential sectors such as construction, textile, fishery, plantations, transportation and tourism, food industry, service, electronic, packaging, mechanic installation, and vocational trainings.
4.2 PHNOM PENH URBAN TRANSPORT MASTER PLAN 2035

Phnom Penh Capital Administration, with the assistance of the Japanese International Cooperation Agency (JICA), also developed the Phnom Penh Urban Transport Master Plan 2035 to solve the current transport problems and support the 2035 Urban Vision under the Phnom Penh Master Plan for Land Use 2035. The Urban Transport Master Plan 2035 aims to maintain the people-environment friendly urban conditions and vitalize the urban activities in Phnom Penh.

The Mission of the Urban Transport Master Plan 2035 is two-fold:

1) to shift from a private-oriented urban transport system to a well-balanced system of public and private transport through a combination of road, public transport and traffic management for improving the mobility of citizens, and

2) to materialize the urban potential of Phnom Penh City.

To achieve this Mission, the Urban Transport Master Plan 2035 proposes five strategies:

- Strategy 1: Formulation of people and environmentally friendly urban transport system with high mobility for the citizens
- Strategy 2: Formulation of physical framework of the city and creation of smooth connection between major cities in the Mekong Sub-regions
- Strategy 3: Maximum use of existing transport space s including underground and elevated spaces in the city center
- Strategy 4: Efficient traffic flow for commodity
- Strategy 5: Environmental / social consideration and establishing appropriate transport-related organizations are the fundamental concept of the master plan.

Table 2: Proposed Urban Transport Master Plan 2035

<table>
<thead>
<tr>
<th>(1) Public Transport System</th>
<th>1) Increase of modes of transport to improve the urban mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2) Introduction of trunk public transportation system</td>
</tr>
<tr>
<td></td>
<td>3) Broad integration of public transport means and related</td>
</tr>
<tr>
<td></td>
<td>countermeasures such as seamless transfer between modes by</td>
</tr>
<tr>
<td></td>
<td>mode interchange area development and restructuring the para-</td>
</tr>
<tr>
<td></td>
<td>transit as the feeder of public transports</td>
</tr>
<tr>
<td></td>
<td>4) Integration with land-use plan</td>
</tr>
<tr>
<td></td>
<td>5) Linkage with tourism development</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(2) Road System (Road Network)</th>
<th>1) Radial and Ring Trunk Road Network System</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2) Road development plan strengthening east-west (northern and southern east-west trunk roads) and north-south (Hanoi and Hun Sen Blvd) corridors.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(3) Traffic Management Measures – to support road and public transport system.</th>
<th>1) Various measures for increasing the attractiveness and comfort of the public transport system such as convenient mode interchange areas (terminal, station and bus stop)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2) Various traffic management measures such as intersection improvement, traffic signal upgrading and introduction of one-way system</td>
</tr>
<tr>
<td></td>
<td>3) Parking policies and measures</td>
</tr>
<tr>
<td></td>
<td>4) Pedestrian environment development</td>
</tr>
<tr>
<td></td>
<td>5) Restructuring of para-transit such as motodop (moto taxi), motorumok modern (tuk tuk) and Cyclo.</td>
</tr>
</tbody>
</table>
6) **Introduction of traffic demand management including mobility management such as park & ride system traffic demand management, such as driver’s education.**

(4) Freight Transport

1) **Inter-Regional Freight Transport System**

2) **Urban Logistics System**

3) **Freight Transport System in Urban Centre**

The two master plans are used as the foundation for the development of the Green City Strategic Plan, which aims to support the master plan to promote green growth in Phnom Penh, which will ultimately contribute to the vision statement articulated in the Master Plan.

4.3 OVERARCHING POLICY FRAMEWORK FOR GREEN CITY DEVELOPMENT IN CAMBODIA

Cambodia’s **National Policy on Green Growth** was approved by the Council of Ministers in March 2013. The policy is envisaged “**to strike a balance of economic development with environment, society, culture and sustainable use of national resources through integration, matching and adaptation, as well as harmonization between a green growth principle and national policy**”.\(^1\) The policy aims at enhancing the wellbeing and livelihood of all people in harmonization with ecological safety through green growth, basing on green economy, blue economy, environment protection, social safety nets system, and uphold of national cultural identity.\(^2\) The **National Strategic Plan on Green Growth 2013-2030** was also approved by the Council of Ministers in March 2013. The plan focuses on nine related strategic directions:

- Green Investment and Green Jobs Creation
- Green Economy Management in balance with Environment
- Blue Economy Development with Sustainability
- Green Environment and Natural Resource Management
- Human Resources Development and Green Education
- Effective Green Technology Management
- Promotion of a Green Social Safety System
- Uphold and Protection of Green Cultural Heritage and National Identity
- Good Governance on Green Growth.

‘Green/Sustainable City Development’ has been identified as a priority area for green growth planning and implementation, by the RGC, through its National Council for Sustainable Development (NCSD). Green/Sustainable City Development aims to deliver a holistic and integrated approach to urban planning, investment prioritisation and economic development in the urban context – simultaneously addressing climate change, resource efficiency, environmental sustainability, social inclusion and poverty alleviation.

\(^1\) RGC 2013a.

\(^2\) Ibid.
4.4 BASELINE ASSESSMENT OF THE URBAN CONTEXT IN PHNOM PENH

Phnom Penh is the capital and largest city of Cambodia. Located on the banks of the Tonlé Sap and Mekong River, Phnom Penh has been the national capital since French colonization of Cambodia, and has grown to become the nation’s center of economic and industrial activities, as well as the center of politics, cultural heritage, and diplomacy of Cambodia.

Geography: Phnom Penh has an area of 678.46 square kilometres (261.95 square miles) and is subdivided into twelve administrative divisions called Khans (districts). The Khans are further subdivided into 96 Sangkats (communes), and 909 villages.

Governance: Phnom Penh City is governed by a Board of Governors consisting of one Governor and six Deputy Governors. The Board of Governors is responsible for providing public services to the citizens to meet their needs and rehabilitating infrastructure facilities of all kinds to improve the standard of living of the people in the city.3

Population: Between the 1998 and 2008 censuses, the population of the Phnom Penh more than doubled from around 0.57 million in 1998 to 1.24 million in 2008.4 The expansion of the city and creation of three additional districts added further to the population growth. Within the new administrative boundaries of the city, the population was estimated to exceed 2 million in 2015.5

Economy: Most of Cambodia’s economic growth has been centered on Phnom Penh over the last decade. Double-digit economic growth rates in recent years have triggered an economic boom in Phnom Penh, with major investments in the construction sector, including in hotels, restaurants, bars, and high rise residential and commercial buildings. In 2012, Phnom Penh was ranked as one of the most cost-effective cities in Southeast Asia due to competitive labor costs, profit tax, and low office and industrial costs.6 High industrial growth rates have been driven largely by manufacturing, with the garment sector contributing 75% of the manufacturing output at a national level in 2010.7 The city accounts for approximately 75% of inward investment in the industrial sector and approximately one million tourist arrivals in 2015.8 Growth in the services sector has been driven by growth in trade, finance and other services, primarily in Phnom Penh, including with the financial sector growing at an average rate of 9% between 2000 and 2013.9

Poverty levels: The incidence of poverty is much lower in Phnom Penh than the rest of the country. Households in Phnom Penh have roughly double the income of the national average. Available data on income inequality shows a slight decline in the levels of income inequality in Phnom Penh between 2009 and 2014.10 However, despite decreasing inequality, poverty rates in Phnom Penh have increased during 2008-2012, reflecting the increased cost of basic consumption goods and services.11 Households in Phnom Penh also have experienced slower income growth, with an average annual growth rate between 2009 and 2014 of around 6.8% and a total increase of around 41%.

Urban development challenges and climate change: Due to rapid urbanization, Phnom Penh is facing a number of challenges including unregulated construction, traffic congestion, unregulated parking,
waste management, pollution and flooding. These challenges are further exacerbated by the threats of climate change impacts. Among lower Mekong Basin countries, Cambodia, together with Lao PDR, has been identified as the most vulnerable in part because of its relatively low elevation, proximity to the ocean and the Mekong River and its limited capacity to cope with climate related risks.12 Flooding and changing precipitation patterns may also adversely affect the quantity and quality of water supplies to the city and result in negative consequences for millions of people. Other threats include the impact of tropical cyclones, which have already increased over the last few decades and are projected to further increase in frequency and intensity. Rising sea levels will also affect Phnom Penh’s fresh water availability by increasing saltwater inundation of low-lying areas and contributing to coastal erosion.13

Environment and pollution: A 2014 study ranked Phnom Penh very low in the air quality Environmental Performance Index (at 162 out of 178 countries). This study concluded that air quality was unhealthy due to particulate matter or dust, and that the city had no on-going real-time air monitoring capability for this parameter.14 At many locations in the city’s system of rivers and lakes, the water is extremely polluted since Phnom Penh has no sewerage treatment system. Wastewater from homes and commercial enterprises flows directly into the storm drainage system, which eventually discharges into local rivers or marshes.

12 Yusuf and Francisco 2009
13 Ibid.
14 Cambodian Air Quality Monitoring Project 2016.
4.5 REVIEW OF THE KEY URBAN SECTORS FOR URBAN GREEN GROWTH

Under Cambodia’s Green City Strategic Planning Methodology, eight key sectors and issues have been identified as key to urban green growth and have been reviewed to evaluate both the constraints and opportunities for green growth (see Figure 2). This evaluation defines green growth in the context of climate change, resource efficiency, environmental sustainability, economic growth, poverty reduction and social inclusion. Overall, the city is facing a number of key green growth challenges and constraints (analyzed in further detail below). In summary, the key issues across these eight sectors/issues are:

- Rising infrastructure costs and lack of access to basic services for poor households
- Rapid urbanization (i.e. rural to urban migration) and limited enforcement of spatial planning
- Limited transport infrastructure and rising levels of traffic congestion and associated pollution
- High energy costs and low deployment of renewable energy and energy efficiency technologies
- Increasing pressure on the cities’ natural systems, including its green spaces, lakes and wetlands
- Increasing vulnerability of the city to the impacts of climate change, including severe floods and drought
- Increasing levels of poverty in the city, despite decreasing levels of inequality
- Constraints on the equitable access to resilient housing, particular for poor households
- Rising levels of pollutants from industrialization, particularly from the manufacturing sector
- Constraints on the protection of tourism values of the city, including its heritage values.
In December 2015, the Council of Ministers approved a revised *Phnom Penh Master Plan on Land Use 2035*, which has the vision of “transforming Phnom Penh to become the heart of Cambodia, located at the intersection of four rivers, as a competitive center for politics, business, and culture with equitable and sustainable development by 2035.”

The *Phnom Penh Master Plan for Land Use 2035* states the ambition of seeing the capital area growing from the current population of under 2 million to 6 million by 2035, due to rural to urban migration towards the capital area. This evokes urban management strategies options, ranging from integrated urban planning between Kandal Province and Phnom Penh Municipality, to the expansion of the municipal boundaries with the incorporation of about half of Kandal Province. The Ministry of Interior will coordinate this integrated planning process and any required updating of the administrative boundaries of Phnom Penh.
The Master Plan for Land Use 2035 also contains a list of priority projects to be implemented in the capital city, as well as urban regulations to be formulated in the short term, including:

- Land-use map and land-use zoning
- Urban planning for development in the Northern and Western parts of Phnom Penh
- Urban planning for development in the Southern part of the city and for the water treatment plant plan at Boeung Cheung Ek
- Public space planning (lake, canal, roads, railway, ports, airport and green areas)
- Prioritized/special development area maps
- Map for identifying high-rise building and height auditing for airplane flight safety
- Map for urban heritage buildings
- Map and regulation on master plan of urban landscape, protecting landscape of tree planting and landscape management as well as public sector facilities.

Overarching policies and regulatory framework
The development of a Master Plan is the requirement of the Cambodian Urban Planning Law (1994). The Ministry of Land Management, Urban Planning and Construction is currently updating the urban planning law through its draft Law on Land Management and Urban Planning (2013), supported by a National Urban Development Strategy (under development), for which a national framework was developed in 2015-2016. Cambodia’s urban regulations were strengthened in the sub-decree #42 on Urbanization for the Capital, City and Urban Areas (2015), which defines lot sizes and floor area ratios for different types of on-site developments and construction projects (residential, commercial or industrial). Building heights are also addressed, as well as on-site parking requirements. While
the sub-decree #42 does not address zoning or land-use issues, it strengthens regulations for future construction activities. Cambodia’s National Land Policy (2009) also provides a national framework for the administration and management of land in Cambodia, supported by the National Policy on Spatial Planning (2011) and the Spatial Planning Handbook (2013). Further to this, under the Organic Law of 2008, the National Programme for Sub-National Democratic Development, provides for improved planning, financing and management of services at the sub-national levels of government.

Outstanding challenges and constraints

Prior to the adoption of the Masterplan on Land Use 2035, Phnom Penh was susceptible to a range of private redevelopment schemes, and had limited provisions for the protection of its overall urban structure, zoning, heritage, natural resources, and its most vulnerable residents. It has been estimated that since 1999 about 150,000 people have been displaced from central locations within Phnom Penh to make room for such redevelopments. Continuation of privatized development remains a risk for Phnom Penh’s urban land-use and the vulnerability of its urban poor.

Phnom Penh has expanded rapidly with the construction of new buildings, high-rises, malls, casinos, gated communities, and high-end residences for the wealthy over the last decade. Seven satellite city projects are scheduled for completion during the next 10-15 years, covering nearly 8,000 hectares, or 12% of the city’s land area. Recently, the area of Phnom Penh under the jurisdiction of its Capital Administration has been expanded to include five more districts for a total of 12, encompassing 96 communes and 678 km². Essential infrastructure for water supply, sanitation, waste management, transport and energy services has been unable to match the rate of urban growth. The improved regulations under Sub-Decree #42 will require strong enforcement capacity to be effective.

Business-as-usual future of urban planning

The approval by the Council of Ministers of the Master Plan on Land Use 2035 could signify the end of “privatized planning”, and a return to a more orderly and equitable development of the capital city. However, it will require a concerted effort to manage the implementation process effectively and ensure there is compliance with the Master Plan on Land Use 2035.

If construction remains largely unregulated under a BAU scenario, the continuation of “privatized planning” into the next decades could negatively impact the functionality of the city as a whole. A lack of attention of the city authorities to the improvement of its basic urban services and the needs of the low-income residents, could bring Phnom Penh to a point of no-return in terms of excessive vulnerability to flooding, traffic congestion, water and air pollution, and inequality that would undermine its goals of emerging as a rising Asian capital and of attracting further high-profile developments. There remains a potential significant risk that opportunities for short-term returns based on business deals with developers may undermine the implementation of the Master Plan on Land Use 2035.

15 Strangio 2014, p.155.
4.5.2 Urban Vulnerability

Due to its location on the alluvial plain of the Mekong River, Phnom Penh is highly vulnerable to flooding. Flood drainage is complicated since the landscape of Phnom Penh is relatively flat. The water level in the rainy season can sometimes reach more than 10 meters, which can result in inundation in many parts of the city. Surveys show that 30% of the capital area is lower than 8 meters, 45% lower than 9 meters, and 60% lower than 10 meters.\(^\text{16}\)

Flooding can be caused by heavy prolonged seasonal monsoon rains, by recurring extreme storm events, by seasonal high water levels in the Tonlé Sap and Mekong rivers, or by a combination of these events. The destructive impacts of flooding are further exacerbated by uncontrolled property development, inadequate drainage and wastewater treatment infrastructure, and the steadily growing unpredictability of the climate.

Phnom Penh city is working to improve its drainage infrastructure, in partnership with the Japanese International Cooperation Agency (JICA). Robust drainage systems constructed in the city core protect the city centre properties to some extent, but outlying and peri-urban areas still remain at great risk to more frequently occurring flooding. Since 1998, JICA grant assistance has helped to improved flood mitigation in central parts of the city through a succession of projects. Phase 1 and 2 succeeded in lessening the damage of floods in the South-Western part of the South-Eastern and North-Eastern part of Phnom Penh. Earlier ADB loan projects also supported flood protection drainage, between 2000 and 2003.

In 2015, the Department of Public Works and Transport of Phnom Penh, prepared a *Study on Drainage and Sewerage Improvement in Phnom Penh Metropolitan Area*, with JICA support, to underpin a draft *Master Plan for Drainage and Sewerage*. The scope of the Master Plan covers sewerage treatment for the entire area of Phnom Penh. Sewerage treatment options consider both off-site and on-site wastewater treatment, depending on location and population density. It is expected that a combined

\(^{16}\) JICA 2015a.
drainage and off-site wastewater treatment facility will be constructed for the densely populated parts of Phnom Penh. Four locations are being considered for construction of off-site sewerage treatment plants. The candidate sites include Tamok Lake, Trabek Lake, Tumpun Lake and Cheung Aek Lake. The wastewater treatment facilities are planned for construction in phases (Table 3), subject to the securing of international finance to support this STP investment project.

Table 3. Sewerage Treatment Plant Implementation Schedule

<table>
<thead>
<tr>
<th>Implementation Phase</th>
<th>Sub-project</th>
<th>Commission year</th>
<th>Population serviced by facility in 2035</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pilot phase and sludge disposal</td>
<td>Construction of STP, 5,000 m³/day capacity</td>
<td>2020</td>
<td>19,000</td>
</tr>
<tr>
<td>Phase 1</td>
<td>Construction of STP, 58,000 m³/day capacity</td>
<td>2026</td>
<td>219,000</td>
</tr>
<tr>
<td>Phase 2</td>
<td>Construction of STP, 38,000 m³/day capacity</td>
<td>2031</td>
<td>153,000</td>
</tr>
<tr>
<td>Phase 3</td>
<td>Construction of STP, 181,000 m³/day capacity</td>
<td>2035</td>
<td>703,000</td>
</tr>
</tbody>
</table>

Source: JICA 2015b

Existing policies and regulatory framework

The legal framework for urban vulnerability sub-sectors, including urban sanitation, drainage and wastewater treatment, is complex, and managed between several ministries. The Ministry of Environment is responsible for administration of the Sub-decree #27 on Water Pollution Control (1999), which provides the standards for wastewater to be released into the environment, in line with the Law on the Environmental Protection and Natural Resources Management (1996). Furthermore, the Sub-decree #72 on Environmental Impact Assessment Process (1999) outlines the EIA requirements for waste processing and wastewater plants of all sizes. These pollution controls, are now being updated through the development of the Natural Resources and Environmental Code (drafted in 2016).

Cambodia does not have a law governing wastewater treatment and sewerage, however there are several relevant policies and regulations. The Ministry of Land Management Urban Planning and Construction’s (MLMUPC) Sub-Decree #86 for Construction Permits requires all houses/ buildings to install septic tank based systems. Furthermore, the Sub-Decree #39 on Management of Borey (2011) requires that developers should “put in place minimum infrastructure” including for “dirty water sewage and dirty water treatment station” (art 8). The Ministry of Public Works and Transport (MPWT) also has the National Policy for Water Supply and Sanitation (2003) and is developing jointly with the MoE a Sub-decree on the Management of the Sewerage System and Wastewater Treatment System (drafted in 2016), which aims to decentralize the responsibilities for sewerage and wastewater management to the sub-national levels of government (municipality and/or district level).

The Ministry of Industry and Handicrafts (MIH) is responsible for implementing and administering the Law on Administration of Factories and Handicrafts (2006), which requires the treatment of waste prior to dumping and the prohibition of discharging industrial waste without prior treatment. The Law on Water Resources Management (2007), administered by the Ministry of Water Resources and Meteorology, also provides scope for the ministry to develop technical standards for the disposal of water-polluting substances.

Another issue for urban vulnerability is the management of urban resettlement programs for infrastructure and housing development. The RGC has introduced Circular No. 3 on the Resolution
on Temporary Resettlement on Land which has been illegally occupied in the Capital, Municipal an Urban Areas (2010). This Circular is intended to support urban poor settlements deemed illegal and sets minimum standards for resettlement sites.

Outstanding challenges and constraints
Flooding is becoming more serious in Phnom Penh. Over the last 50 years, destructive flooding has occurred approximately every 5 years. The flooding events are becoming more serious because of the commercial developments in areas that were originally public green spaces, natural lakes or wetlands, and which historically served as natural flood control and wastewater management systems. During the period of 2003-2015, it is estimated that the area of Phnom Penh marshes, lakes and wetlands decreased by 50%.

Recent flooding and rainfall records suggest that the 5-year flooding interval may be shortening. In 2011 and 2013, Phnom Penh experienced some of the most extreme flooding in history, which had a substantial economic impact and affecting thousands of families. For example, the 2011 flood (visualised in figure 4) impacted over 17,000 families in Phnom Penh. The 2013 flood cost about USD 662 million nationwide for flood damages and losses and for recovery and reconstruction. The most damaging flooding impacts have been felt in peri-urban and low-lying areas, where low-income residents reside. The flood waters remain for longer periods in these areas, due to a lack of drainage infrastructure. To adapt to frequent flooding events, the low-income households have resorted to building elevated housing platforms and walkways, or by moving to temporary shelters.

Figure 5. Image of Phnom Penh at the peak of the 2011 season floods (source: JICA 2015b)

A further challenge in urban vulnerability is lack of wastewater treatment infrastructure. In the main urban areas, most domestic and commercial wastewater discharges to onsite septic tanks, which

17 People in Need Cambodia, 2015.
18 JICA 2015a.
19 Sahmakung Teang Tnaut 2012a.
connect to the municipal sewer and drainage system, consisting of subterranean drains and open canals. Surveys have concluded that about 70% of households have septic tanks that connect to the drainage system while about 20% have septic tanks with no connection.20

Wastewater and surface drainage generated from central Phnom Penh drains to catchment lakes to the north or the south. Drainage flowing north is channelled to Boeng Pung Peay Lake before being discharged to the Tonlé Sap river. Most of the city’s wastewater (about 80%) flows south and is partially naturally treated in a network of wetlands, marshes and lakes. In both Boeung Tumpun and Boeung Cheoung Ek lakes, nutrients from wastewater nourish the growth of morning glory fields, which are harvested by the local populations and sold in city markets. It is estimated that 20% of total vegetable consumption in Phnom Penh comes from harvesting gardens from these lakes.21 If not properly washed and cooked, vegetables grown under such circumstances could pose a public health problem.22

Phnom Penh also has no facilities for disposing sludge accumulated from septic tanks. Previously, sludge from commercial buildings and households, was extracted by sludge privately operated tanker trucks then disposed in a lagoon at the solid waste dumpsite. Once the lagoon became overloaded with sludge, the dumpsite operators suspended the dumping of sludge. Since there is no current location to disposal of sludge, most sludge operators now illegally dump the sludge in drainage channels and in low-lying wetlands.

In the peri-urban and low-income areas sanitation facilities are still weak. Most households that have sanitation facilities use pour flush latrines, which leach directly into local drains and water-courses. About one third of households in extremely poor areas either buries’ sanitary wastes or practices open defecation, and there are reported high incidences of diarrheal diseases, hepatitis A, intestinal worm infections, and protozoan infections resulting from faecal contamination linked to unsanitary living conditions and exposure to waste water discharges.23

Land tenure insecurity is also another challenge to urban vulnerability. Forced evictions of low-income residents as a result of large-scale development projects, has left many families more vulnerable to the destructive impacts of flooding and continued poverty, given they are often relocated to peri-urban areas and exposed to higher risks. Since 1990, it is reported that 29,000 families, or about 150,000 people, have been displaced from their homes in Phnom Penh.24

Business-as-usual future of urban vulnerability

Under a BAU scenario, urban development will continue to encroach upon natural flood control systems such as the network of lakes, marshes and wetlands. As a result, flooding will become more problematic, will adversely impact and inconvenience greater numbers of families, and will most likely negatively affect economic growth. More businesses will have to remain closed for longer periods, more people will not be able to commute to places of employment, and more children will not be able to travel for extended periods to local schools. Flooding impacts will cause greater economic disruption and will send more vulnerable communities into poverty. As Phnom Penh becomes more densely populated, it can be expected that flood damage and recovery costs will increase significantly.

\begin{itemize}
\item 20 JICA 2015c.
\item 21 Sahmakung Theat Tnaut 2012b.
\item 22 Otis 2013.
\item 23 People in Need and UNICEF, undated.
\item 24 Sahmakung Teang Tnaut 2014.
\end{itemize}
and could reach USD 1 billion nationwide for extreme flooding events, based on cost projections extrapolated from previous flooding events.25

Wastewater will remain largely untreated under a BAU scenario, and \textit{water borne diseases} will become more prevalent for communities located around the lakes and marshes in the southern part of the city. City residents will continue to be exposed to potentially harmful vegetables grown in the city lakes. As more wastewater is generated from an increasing urban population, the natural biofiltering mechanism from the network of lakes and wetlands will \textit{become overloaded}. Water in the lakes and wetlands will become more septic and emit offensive odours. Due to deteriorating environmental conditions, \textit{tourists will no longer view} Phnom Penh as an attractive city to visit and will seek alternate destinations in Cambodia or the region. The population density of the urban poor is projected to increase in peri-urban areas under a BAU scenario, and these people will continue to use unsanitary toilets, creating increased spreading of human waste pollution during flooding events.

Figure 6. Phnom Penh flooding has adverse economic impacts, including on the trade of goods and services (photograph by Bernardo Salce).

\subsection*{4.5.3 Energy}

While Cambodia relies predominantly on traditional biomass and imported petroleum products, Cambodia’s energy supply mix is changing rapidly to meet the demands of urbanization, and structural change in the economy.26 At the national level, the transport sector is the biggest consumer of energy, responsible for 46\% of total final energy consumption (TFEC) and 91\% of consumption of petroleum products, followed by the residential sector (31\%), the industry (16\%) and commercial and public services (7\%).27

Grid coverage is expanding and electricity accounts for a growing share of energy consumption. Phnom Penh accounts for the lion’s share of national electricity demand (67\%), with peak demand of

25 National Committee for Disaster Management and UNDP Cambodia 2014.
26 MME and ERIA, 2016
27 Cambodia Energy Balance Table, 2015
approximately 563 MW and electricity consumption of 3,268 GWh of grid electricity in 2014.28 Access to electricity in Phnom Penh is relatively good, with 90\% of households connected to the grid. However, approximately 50\% of Phnom Penh’s poor settlements are not connected to grid.29 Electricity prices are amongst the highest in the world, with tariffs in Phnom Penh ranging between USD 0.17/kWh and USD 0.26/kWh.

Cambodia’s electricity supply in 2015 consisted of domestic hydropower (47.6\%), imports from Viet Nam, Thailand and Lao PDR (21.0\%), domestic generation using coal (18.6\%), and domestic generation using diesel and heavy fuel oil (13.0\%).30 Phnom Penh receives grid electricity from a range of sources, including imports Vietnam, hydropower from Kirirom, two thermal power stations and one diesel plant operated by EDC, and six other private producers.31

Deployment of renewable energy is currently largely limited to large-scale hydropower. Small-scale applications (off-grid solar PV, biogas and biomass gasification) contributed to less than 1\% of domestic supply in 2012.32 In Phnom Penh, small solar PV systems have been installed in the city, although no consolidated data is available on such installations. Waste-to-energy projects also supply electricity to the grid in Phnom Penh (approximately 16.9 GWh in 2014), generated manufacturing using biomass from food and wood processing.33

Energy consumption in Phnom Penh is dominated by the residential sector, commercial activities and industry (see figure 7). Phnom Penh, as Cambodia’s centre of industrial activity, is a major consumer of commercial energy services. Among the energy-consuming industries, the garment sector is the leading consumer, followed by brick-making, rice mills, rubber production and the food sector.34 The industrial sector consumes most of its energy from biomass (58\% of industrial TFEC), followed by petroleum products (21\%) and electricity (18\%). However, the cost of electricity from the Cambodian national grid is higher than in all other South-East Asian countries and electricity accounts for a disproportionate share of SMEs’ costs. In addition to this, SMEs frequently need to use diesel or heavy fuel-oil (HFO) generators to avoid disruption to their production processes whenever the grid goes offline.

\begin{itemize}
 \item 28 EAC 2014 and EDC 2014. It should be noted there are significant differences in figures quoted by EDC and EAC.
 \item 29 Sahmakum Teang Tnaut 2012.
 \item 30 Deau, 2016.
 \item 31 Sahmakum Teang Tnaut 2012.
 \item 32 IEA, 2015b.
 \item 33 EAC 2015.
 \item 34 Ibid.
\end{itemize}
Existing policies and regulatory framework

The *Electricity Law of the Kingdom of Cambodia* (2001) regulates the operations of the electric power industry and service providers.\(^{35}\) One of its objectives is to encourage the private sector to invest in the energy sector to supplement EDC’s capability.

Cambodia’s *National Energy Policy* has four objectives: 1) To provide an adequate supply of energy throughout Cambodia at reasonable and affordable price; 2) To ensure a reliable and secured electricity supply at reasons price, which facilitates investment in Cambodia and development of national economy, 3) To encourage exploration and environmentally and socially acceptable development of energy resources needed for supply to all sectors of Cambodia economy, and 4) To encourage the efficient use of energy and to minimize the detrimental environmental affects resulted from energy supply and consumption.

The RGC’s activities in to promote renewable energy to date have focused on development of large-scale hydropower and rural electrification. However, renewable energy deployment is supported by the *National Policy on Green Growth* (2013), *National Strategic Plan on Green Growth 2013-2030*, and the *Cambodian Climate Change Strategic Plan* (2014-2023), and Cambodia’s *Intended Nationally Determined Contribution* to the UNFCCC (2015).

The *National Energy Efficiency Policy, Strategy and Action Plan*, drafted in 2013, is scheduled to be finalised and adopted in 2017. It set targets of reducing the national energy demand by 30% and national CO₂ emissions by 3m tons by 2035, compared to BAU projections.\(^{36}\) Furthermore, Cambodia’s draft *Natural Resources and Environmental Code* (drafted in 2016) includes incentives to promote renewable energy and energy efficiency.

Outstanding challenges and constraints

System losses in the Phnom Penh electricity distribution system have been running at between 8.2% and 9.6% between 2009 and 2014.\(^{37}\) The power sector is also beset with inefficiencies in its

\(^{35}\) ADB 2015b.
\(^{36}\) RGC 2013.
\(^{37}\) EDC 2014.
administration, and transmission and power generation infrastructure.38 Quality of supply remains low, planned and unplanned power outages and voltage fluctuations are common. In 2015, the average number of power outages in Phnom Penh a customer could expect was 24, and the average duration of outage was 720 minutes (the worst rate in ASEAN). Domestic and foreign firms identify the high costs and electricity supply shortages as a main constraint to doing business in Cambodia.39

Renewable energy deployment and potential: Cambodia has considerable renewable energy potential, including solar, biomass and waste-to-energy, and some wind. Cambodia has significant solar energy potential, with an average duration of 6-9 hours sunshine per day and average energy of 5 kWh/m2/day.40 Solar water heaters also have a potential role in urban households; however, their application in Cambodia remains low.41 Municipal solid waste and sewerage are other potential sources of bio energy.42 Generation of biogas for heating purposes and electricity generation has significant potential in Phnom Penh at water treatment plants and manufacturing plants in the city.43

Grid-connected renewable energy faces a number of challenges in Phnom Penh, including: high interest rates for small loans, which make the upfront costs difficult to overcome; reluctance of cost-sensitive industries to make unnecessary longer-term capital investment; a lack of regulatory support, for example through net-metering or a feed-in tariff; a lack of awareness of systems amongst potential customers; and a lack of maintenance service providers.44

To date, there has been uneven implementation of Cambodia’s policies to promote renewable energy. Cambodia is yet to adopt any renewable energy targets, and its future forecasts for electricity generation usually show only large hydropower and fossil fuels as major sources.45 Without a policy framework or programs to promote non-hydro renewable energy, the development of renewable energy industry has largely been left to the private sector.46

Energy efficiency potential: With high energy costs in Cambodia, energy efficiency measures present an economic opportunity. Possible energy efficiency savings in Phnom Penh include:

- Industry: 15-70% saving potential in garments, ice factories, food industry, etc.
- Household appliances: up to 50% by introducing energy efficiency labelling schemes
- Building sector: 20-30% via the use of appropriate building materials and construction principles
- Use of biomass: 30-50% via the use of ICS, more efficient charcoal kilns and char briquettes;47
- Municipal services: measures including energy efficient lighting (using 40-80% less electricity), efficient water pumps (10-30% efficiency savings);
- Energy sector: improving transmission and distribution efficiency (reducing losses from 9.6%), reducing own use, improving efficiency of generation assets.

The absence of energy efficiency standards and labelling means that consumers lack information on the efficiency of household appliances and other products. This puts more expensive energy-

\begin{flushend}
38 USAID 2015.
39 ADB 2011b.
40 ICEM and ECA 2013.
41 Matinga 2012.
42 Ibid.
43 ADB 2015b.
44 Ibid.
45 GGGI 2014a.
46 Matinga 2012.
47 RGC 2013.
efficient appliances at a disadvantage, leading to proliferation of cheaper, inefficient products.48 Cambodia also does not currently have energy efficiency standards for buildings or vehicle emission standards.49

Other barriers to increased energy efficiency in Cambodia include:

- A lack of awareness of energy efficiency opportunities, despite high energy costs;50
- Lack of understanding of energy efficiency investment amongst commercial lenders leading to reluctance to finance energy efficiency projects at businesses;
- Lack of funding for a dedicated RGC program on energy efficiency;51 and
- Lack of institutions that can undertake energy audits and implement energy efficiency measures (such as energy service companies (ESCOs)).52

\textbf{Business-as-usual future of energy}

Current plans for the energy sector generally foresee energy development continuing along current lines, including with increasing imports of fossil fuels and continuing high import dependency. Biomass use is also expected to increase although at a slower rate as general modern commercial energy becomes more widely used. Energy demand growth is expected to continue at a rate of approximately 5.2\% between 2015 and 2025,53 and continue rapid growth demand up until at least 2030.54 Growth is likely to be higher in the capital city. Peak demand and annual power demand both expect to grow at an annual rate of 10\%. This implies a growth in peak demand from 638 MW in 2013 to 2,170 MW in 2025, and in power demand from 3,560 GWh in 2013 to 12,113 GWh by 2025. Given a similar growth rate in the capital peak demand could increase from 563 MW in 2014 to 1,729 MW by 2025, and demand would increase from approximately 3,268 GWh in 2014 to 10,041 GWh by 2025.

Under a BAU scenario, this growth in energy demand is expected to be met through expansion of coal and through surplus hydropower capacity installed prior to 2015. Electricity imports are expected to dwindle, although by 2025, it is expected that imports will be required again. No new hydropower is planned between 2015 and 2025. Expensive diesel generation is also expected to be gradually decommissioned. Renewable energy is expected to play a minor role, providing little more than 1\% of power by 2025, unless policies change.55 Aside from meeting needs in specific niches such as electricity supply in remote rural areas, supply for isolated grids and for private customers, there is not likely to be any meaningful plan in place to promote broader use of renewable energy. Similarly, energy sector development plans remain focused on the supply-side, while issues of demand side management and energy efficiency do not seem to have been seriously considered.

\begin{itemize}
 \item 48 RGC 2013; Matinga 2012.
 \item 49 RGC 2013a; GGGI 2014a.
 \item 50 Meeting with EUROCHAM, 29/10/2015.
 \item 51 GGGI 2014a.
 \item 52 Meeting with EUROCHAM, 29/10/2015.
 \item 53 RGC 2013.
 \item 54 Figures provided by MME, General Department of Energy.
 \item 55 IEEJ 2014.
\end{itemize}
There is substantial potential for roof-top solar PV in Phnom Penh to service households, businesses and manufacturing (photograph by Bernardo Salce).

4.5.4 Transport

Phnom Penh’s transport is dominated by roads and the use of private vehicles. Motorbikes, para-transit (taxis, motorcycle taxis and tuk-tuks) and cars accounted for 52%, 14% and 10% of modal share in 2012, respectively. Phnom Penh has seen rapid growth in transport demand over the last decade, driven by rapid population growth and increasing economic activity. At the same time, improved incomes and cheaper imported vehicles have led to increased motorisation and vehicle ownership. While Phnom Penh’s population grew by approximately 2.3% per year between 2001 and 2011, vehicle registrations grew by over 11.7% per year, more than tripling the number of registrations over the decade.

The rapid expansion of the use of private transport in the city has resulted in increasing traffic volumes as Phnom Penh’s infrastructure development and traffic management has been outpaced. The net result of this has been slowing traffic and increased levels of congestion, increased road accidents and high levels of air pollution. Average driving speed in the city decreased from 22.9 km/h in 2000 to 14.6 km/h in 2012. At peak times traffic speeds can be extremely low in central areas, at around an average of 10 km/hr.

Freight transport is growing in the city, along with its economic expansion. Road freight is extremely important in Phnom Penh, with freight traffic volumes increasing dramatically in areas that service the manufacturing industry (largely in the peri-urban areas).

56 Trac Thai Sieng 2015.
57 JICA 2014.
58 Ibid.
59 Ibid.
Phnom Penh is currently without a system of public mass transit. Buses and ferries are the only two modes of public transport available. Motodops (motorcycle taxis) are unregulated and there are effectively as many in operation as motorcycles in the city (i.e. 500,000). The number of registered tuk-tuks have also increased dramatically over recent years, totalling approximately 6,000 in the city.

Cambodia now has the worst road traffic accident rate in Southeast Asia, with an estimated 2,000 to 2,100 fatalities in 2014. Motorcycle users accounted for 77% of the casualties and 68% of the fatalities, and the majority of motorcycle accidents occurred in Phnom Penh. The two leading causes of fatalities were speeding (51%) and alcohol abuse (18%).

Existing policies and regulatory framework

Phnom Penh’s *Urban Transport Master Plan 2035* has been drafted to help solve the current transport problems and support the Urban Vision under the *Master Plan for Land Use 2035* (see section 4.2). The Mission of the *Urban Transport Master Plan 2035* is two-fold:

1) to shift from a private-oriented urban transport system to a well-balanced system of public and private transport through a combination of road, public transport and traffic management for improving the mobility of citizens, and

2) to materialize the urban potential of Phnom Penh City.

The *Urban Transport Master Plan 2035*, builds on the first Urban Transport Master Plan 2015 for Phnom Penh that was developed in 2001 with the assistance of JICA. The 2001 Master Plan was partially implemented, resulting in installation of traffic signals at major road intersections. This installation helped alleviate traffic issues to some degree, but the lack of public transport was not addressed. The *Urban Transport Master Plan 2035* seeks to increase the use of public transport to

60 Ibid.
61 Phnom Penh Post, 18/11/2014.
62 Ibid.
63 Ibid.
64 Following the introduction of the road traffic law in 2009, motorcycle drivers have been required to wear helmets, and the law is being enforced in Phnom Penh, although it is not clear what impact this has had on reducing injuries.
over 30% of the modal share by 2035. This would be achieved by introducing (among other measures) 10 bus routes by 2020 as part of a bus rapid transit scheme, and a partially underground elevated rail transit system by 2035.

At the national level, there are legal requirements for sidewalks to be reserved for pedestrians, and parking management regulations, provided under the Road Traffic Law (2015), the Road Law (2014) and Sub-decree #42 on Urbanization for the Capital, City and Urban Areas. The Ministry of Public Works and Transport has also developed its Climate Change Action Plan for the Transport Sector (2014-2018), which identifies a number of priority actions for green transportation, including the need for integrated public transport systems in the main cities, and enhancing the maintenance and inspection of vehicles.

Outstanding challenges and constraints

The provision of transport infrastructure has not kept pace with the rapid traffic expansion. Compared to other cities in the region, Phnom Penh has a low road density, particularly outside the city centre (central khans account for 94% of the roads). Some residential projects have been pursued in suburban areas without consideration being given to road network access and traffic dispersal. Similarly, a lack of planning for heavy vehicles serving factories and construction depots has led to the deterioration of roads in some areas.

There are several challenges identified with Phnom Penh’s traffic management: problematic intersections; inadequate travel signage systems; a lack of road markings and uncontrolled parking. The inadequate parking spaces in the city centre, is becoming an acute problem, resulting in drivers parking on the road or on the sidewalk and obstructing pedestrians. Furthermore, Phnom Penh’s pedestrian sidewalks have been eroded by street widening in favour of cars. Enforcement of the parking regulations is a significant challenge. Freight transport is also facing problems, including damage to the roads, which slows the trucks down, some narrow routes, and a lack of off-road space for loading and unloading.

Business-as-usual future of urban transport

Under a BAU scenario, rapid population and economic growth in the city is likely to result in rapidly increasing traffic volumes. Forecasts for 2035 project an increase in traffic demand (by number of trips) by 1.6 times from 2012 to 2035. This implies a growth rate of approximately 2.1% and an increase in demand of approximately 30% between 2012 and 2025. At the same time, all forms of motorized transport are expected to increase, and walking decrease.

With continuing traffic management problems and increases in motorized transportation compounding already chronic issues with lack of parking space, central areas of the city will become extremely congested and average travel speeds will decline further. This is likely to represent an important drag on the city’s economy. At the same time, environmental and safety indicators are likely to continue their decline. Air quality is likely to become increasing problematic, especially with the use of high-sulphur fuels.

This seems conservative relative to expected high levels of population and economic growth, nevertheless as the only figures subject to a robust modeling exercise, they have been adopted here.
Figure 10. Transport logistics are under increasing pressure in Phnom Penh, which has flow-on impacts for the economy (photograph by Bernardo Salce).

4.5.5 Built Environment

The built environment in Phnom Penh consists of a vast array of architectural styles and housing types. French colonial style buildings and villas historically dominated the cityscape. Now some of these buildings have been restored, but many have been destroyed or are in disrepair. Currently, typical homes consist of either the Chinese style shop houses, or single detached villas. The shop house is the most predominant since it is less expensive and can be used for both commercial and room renting purposes.

More recently, there have been significant investments in high-rise luxury apartments, entertainment complexes, commercial buildings and satellite cities. These types of structures require large amounts of energy unless energy conservation and efficiency measures are integrated into their construction and operation. Examples of new construction projects include Koh Pich, Bodajju Residences and Booyoung Town. Climate change, and the projected increases in temperatures and flooding, could reduce the resilience of urban buildings. Structural damage could result from severe and frequent flooding events in the future. “No regret” options for building codes that homes withstand changing climatic conditions would reduce this risk for Phnom Penh’s urban population. This is a particular challenge for urban dwellings in peri-urban areas where proper housing is scarce. Evicted families often need to resort to building their own houses from recycled materials, which are more vulnerable to urban flooding events.

Existing policies and regulatory framework

The Sub-Decree No. 43 on Urbanization of the Capital City, Towns, and Urban Areas. This sub-decree regulates land use within a construction plot, and places limits on the construction footprint within a parcel of land to insure that adequate open spaces remain for trees and gardens. The benefits of this sub-decree include the following: cooler and more attractive built environment; opportunity for onsite rainwater capture / infiltration to curtail flooding; less densely packed housing; and more open space to create natural ventilation corridors.
The Ministry of Land Management, Urban Planning and Construction (MLMUPC) is currently revising the Construction Law to incorporate requirements on health and safety.66 The RCG has also recognized the lack of affordable housing as a problem, and has adopted the National Housing Policy (2014). The goal of the policy is to provide low- and medium-income households and vulnerable groups with access to decent housing, or improvement in existing housing. The policy is inclusive and calls for collaboration with development partners, civil society, charitable organizations, private sector, and sub-national and national authorities.67,68

More recently, the MLMUPC has also sought to address the needs of vulnerable households through its Climate Change Action Plan 2015-2018. The Climate Change Action Plan has promoted proper shelters for low income and vulnerable households, and envisages that green building design and low-carbon technologies will be considered in future building codes.

Outstanding challenges and constraints

Despite the efforts under the affordable housing policy, there is an insufficient supply of comfortable low-cost housing in Phnom Penh. Almost all new housing developments in the city are targeted towards high-income earners and foreigners. The challenge is to make affordable and green housing projects a priority and attractive to private investors. The existing shop houses, while relatively low-cost, are not well designed with regards to energy efficiency and natural ventilation. Low-income labourers tend to rent rooms in shop houses where overcrowding and heat stress can be hazardous to occupants. Furthermore, shop houses are also normally built right up to the sidewalk, leaving no space for green areas or trees.69

While the construction boom is taking place, there is limited documented evidence that the concept of green building design70 is being integrated into architecture and property development plans. With the current updating of the Construction Code, there is an opportunity to integrate the concepts of green building design into the code.

Business-as-usual future of the built environment

Under a BAU scenario, the Phnom Penh city landscape will continue to be dominated by high-rise apartments, commercial complexes, gated communities and high-end satellite cities with limited occupancy. Availability of affordable housing will be insufficient in central Phnom Penh to meet the demands of many residents. More residents will continue to live in crowded inner city shop houses or in slum areas located in peri-urban areas.

With no guidance on constructing or retrofitting homes and building with regards to green design, energy efficiency and the use of locally available materials, electricity demand will continue to increase (predominantly from non-renewable sources) and therefore contributing to rising \(\text{GhG} \) emissions from urban construction. There will be a lack of investment in solar PV on the roof-tops of houses, without regulatory and policy reforms.

66 Nara, undated.
67 OHCHR Cambodia 2012.
68 Beng Hong Socheat Khemro 2014.
69 Ibid.
70 Green building design refers to both a structure and the using of processes that are environmentally responsible and resource-efficient throughout a building’s life-cycle: from siting to design, construction, operation, maintenance, renovation, and demolition. In other words, green building design involves finding the balance between homebuilding and the sustainable environment.
4.5.6 Manufacturing

The manufacturing sector has been a key contributor to Cambodia’s economic growth. It has accounted for the largest share of productivity growth in the country, growing by an average rate of 9.4% per year during 2000–2012. It currently accounts for approximately 18% of Cambodia’s GDP. Cambodia’s large manufacturing firms are geographically concentrated, with 68% being located in Phnom Penh and a further 13% in the adjacent Kandal Province.

Garment manufacturing is the largest manufacturing subsector in Cambodia, accounting for 10.5% of GDP in 2015, and the growth rate of the subsector is projected to remain higher than the GDP growth rate until 2019. Both the number of garment factories and the number of people employed in the sector increased in 2012–2015. Nationwide this industry also employs around 80% of the non-agricultural labor force, 86% of who are women.

Pollution is a growing issue for manufacturing in the city. This includes pollutants to air from energy production (including off-grid and back up diesel generation), solid and hazardous waste, noise pollution, and possibly, most acutely water pollution. Although detailed figures on pollution issue attributable to the manufacturing sector are not available, estimates for water pollution were developed from water consumption figures available from the Phnom Penh Waters Supply Authority (PPWSA) for commerce and industry (see Figure 12).

ADB 2014c.
CIA 2015.
RGC 2015.
CIA 2015; ILO Cambodia 2015.
Existing policies and regulatory framework

The Law on Administration of Factory and Handicraft (2007) regulates the establishment and operation of factories. The law stipulates the following:

- Factory floors should be free of smoke, dust and other pollutants;
- All industrial waste should be discharged in accordance with standards and regulations ‘of competent institutions’;
- Discharging of toxic industrial wastes or hazardous substances without prior treatment is prohibited;
- Management of industrial waste is the responsibility of the factory owner; and
- The Ministry of Industry, Mines and Energy (now the MIH) has the right to fine, suspend or halt factory operations if environmental regulations are not complied with.\(^\text{76}\)

Cambodia’s Industrial Development Policy 2015–2025 lays out a vision to diversify the country’s industrial base and increase exports of manufactured products other than garments.\(^\text{77}\) One of its objectives is to reduce the export share of garment and footwear to 50% of total merchandise exports by 2025. The policy also seeks to strengthen skill development, to ensure stability of labor supply, productivity growth and improving living standards of workers.\(^\text{78}\)

Water emissions standards are in place under the Sub-Decree on Water Pollution the Sub-decree #27 on Water Pollution Control (1999), which provides the thresholds (standards) for wastewater to be released into the environment, in line with the Law on the Environmental Protection and Natural Resources Management (1996), including requirements to treat waste products such that emissions standards are met. Air and noise pollution standards are provided in Sub-decree #42 on Air Pollution and Noise Disturbance Control.

Outstanding challenges and constraints

For Cambodia’s manufacturing sector, the key challenges to greener operations include reducing pollution, reducing energy consumption through energy efficiency and conservation measures,

\(^{76}\) RGC 2007b.
\(^{77}\) RGC 2015.
\(^{78}\) Ibid.

Figure 12. Estimated wastewater discharges from commerce and industry in Phnom Penh 2004 - 2013
improving occupational health and safety, and improving working conditions. The monitoring and enforcement of pollution control standards requires further strengthening.

The key environmental problems for the garment industry are: air pollution, GhG emissions from boilers, and potentially toxic wastewater from dyeing and bleaching processes.79 The industry is also very energy-intensive and typically operates using outdated and inefficient equipment. In addition, providing adequate workplace ventilation and avoiding worker exposure to toxic chemicals are necessary to improving the working environment.

An additional issue is the location of manufacturing industries in areas of the city with mixed uses, such as next to residential or agricultural land uses. In these circumstances pollution emissions from industry can cause significant problems for people living and working nearby. This has been an important source of complaints to the city authorities. Similarly, the location of manufacturing industry in areas with unsuitable transportation access can cause traffic congestion problems for the surrounding area.

Energy costs are a significant burden for garment factories, even with discounted electricity rates. The cost for charcoal and wood (used to fuel boilers to supply steam-irons and fabric dying basins) is also steadily rising. Selected factories have undergone energy efficiency audits, which found 30% energy savings are readily achievable via efficiency improvements to lighting, boilers, vents, sewing machines, compressors and other equipment.80

\textbf{Business-as-usual future of the manufacturing sector}

Given an assumed overall GDP growth rate of 7.5\% between 2016 and 2025, and using the assumption of an increase in manufacturing’s share of GDP from 15\% in 2012 to 20\% by 2024 given in the national industrial development strategy, growth in manufacturing is projected to run at approximately 10.1\% per year between 2015 and 2025. Garment manufacturing is expected to continue to play an important role until 2027.

Growth in the manufacturing sector is likely to become increasingly diversified. Better infrastructure provision, lower energy costs, greater inward investment and greater domestic demand will likely be important drivers of diversification into a broader range of manufacturing sectors, including upstream sectors to process Cambodia’s agricultural products.

Manufacturing in Phnom Penh is expected to see the most rapid growth in energy demand, and a gradual shift to electricity use rather than other energy sources. Overall energy demand in manufacturing is likely to increase, be it in the form of electricity, biomass or fossil fuels.

The corollary of increased energy use in the sector – without additional pollution controls, energy efficiency measures or substitution of conventional generation for renewable energy – is increasing air pollution. While air pollution may be reduced to the extent that grid-based energy from large hydropower plants displaces fossil fuel generation, this is unlikely to lead to any absolute decline in air pollution in the sector by 2026.

Water pollution from manufacturing is likely to become an increasingly acute problem. With rapid industrial growth, water consumption and wastewater emissions will grow; if the established trend continues, growth in water pollution is likely to outstrip manufacturing growth. Water use intensification is also likely to result from the diversification of manufacturing into water-intensive and polluting industries (such as rubber processing, food and beverage manufacture etc.). Similarly, issues of solid and hazardous waste are likely to grow with manufacturing industrial growth.

79 For example, RGC’s Green Growth Roadmap identified toxic pollution from the garment sector as one of the most pertinent challenges to urban green growth.

80 GGGI 2014b.
Issues of local pollution (including noise pollution) will become increasingly acute without more effective land use zoning, particularly as peripherally located manufacturing plants are likely to see growth in residential development around their locations. Traffic and congestion issues around some manufacturing plants are also likely to become more acute.

Figure 13. Many of Phnom Penh’s factories are powered by charcoal and wood as fuel for boilers (photograph source: UNIDO)

4.5.7 Solid Waste Management

It is reported that domestic waste generation in Phnom Penh is about 600 tons per day. The waste is generated from households, commercial establishments and markets (see Figure 14).

Figure 14. Waste generation by sources in Phnom Penh

Studies have concluded that about 72% of domestic waste is organic.81 More in-depth technical analyses have measured Phnom Penh domestic waste characteristics with the following results:

Source: The Asia Foundation 2015.

81 MOE 2015b.
• combustible content = 90% (due to high waste food content);
• moisture content = 64%;
• calorific value = 1,598 Kcal per kg; and
• carbon / nitrogen ratio = 20:1.82

These statistics indicate that the domestic wastes are suitable as an energy generation source or for composting.

Solid waste management in urban areas is recognized by all stakeholders as a priority environmental problem. Particular attention has been given to the lack of waste management in Phnom Penh, since waste collection in many parts of the city is haphazard or lacking altogether. As a result, many tons of wastes are routinely dumped into local rivers and ponds, are burned or remain uncollected. Uncollected waste is scattered, often blocks local drainage channels and creates unsanitary conditions.

Waste collection is unreliable or non-existent in the outlying or peri-urban areas where most low-income residents live. In a recent survey, it was reported that a majority residents living in outlying Phnom Penh districts were not receiving any waste collection services.83 The districts where waste collection is most lacking include Russey Keo, Mean Chey, Chbar Ampov, Chroay Changvar and Dangkao. Where waste collection services are not available, residents reported that they either burned the waste or dumped waste on existing uncollected piles.84

Solid waste that is uncollected often accumulates in drainage channels and natural watercourses. During heavy rain events, the drainage capacity is limited due to the blockages from the wastes. It is forecast that, due to climate change, more severe and frequent rainfalls will occur and that solid waste collection will need to be improved to ensure that drainage channels can function properly.

The domestic waste that is collected is transported to a dumpsite in Dangkao district, which is located 15 km from city center. At the waste dump, the transported waste is scattered or burned. As many as 500 waste scavengers, of which 80% are women, make their living through informal recycling at the dumpsite.85 Children often accompany their mothers to the dumpsite. It is estimated that waste scavengers earn around USD 5-10 per day. In October 2009, PPCH attempted to institutionalize the role of waste scavengers by defining their roles with respect to waste management, but this initiative did not result in any formal registration of waste pickers.86

In the Phnom Penh municipality, a private company Cintri Ltd manages domestic waste collection and transport. In 2002, Cintri entered into a contract with the Phnom Penh Municipality, which gave Cintri exclusive rights for municipal waste management for 50 years.

Existing policies and regulatory framework

Many authorities and institutions are involved in solid waste management in Phnom Penh (Figure 15). The Ministry of Environment (MOE) is responsible for preparing guidelines on solid waste management including collection, transportation, storage and recycling. However, it has limited capacity to enforce or monitor the guidelines. At the local level, the Waste Management Division of the PPCA is responsible for waste management within Phnom Penh. Under the Waste Management Division, there are two supporting offices: Technical Environmental Impact Monitoring Office and

82 Seng et al. 2011.
83 Sahmakum Teang Tnaut 2014.
84 Sahmakum Teang Tnaut 2015.
85 Meeting with Phnom Penh Waste Management Division, 13 January 2016.
86 Cambodian Education and Waste Management Organization 2014.
Waste Management Authority Office. The Waste Management Authority Office is responsible for overall solid waste management in Phnom Penh including waste collection, transport, and disposal, and also for monitoring private waste collection companies. Under PPCH, there is also a Landfill Management Authority responsible for operating the Dangkor landfill site.

The Phnom Penh Department of Environment has prepared eight plans for improving solid waste management in Phnom Penh. These plans include the following:

- Waste management database;
- Waste separation;
- Waste discharge and waste collection;
- Landfill waste disposal according to waste separation plan;
- Waste recycling and reuse;
- Waste treatment;
- Capacity building; and
- Enforcement and penalties.

Figure 15. Phnom Penh solid waste management authorities and institutions

Source: Asia Foundation 2015.

In sub-decree 113 RNKRO/BK enacted on 27 August 2015, urban solid waste management was decentralized and responsibility shifted to the provincial, municipal and district levels. As a result, Phnom Penh Municipality has delegated responsibility for waste collection and disposal to the 12 city districts. This requires that each city district enters into a separate contract with Cintri for solid waste management services.

Nexus, together with the Ministry of Environment, Department of Green Economy in NCSD, and Phnom Penh Capital Administration, is currently developing a Solid Waste Management Strategy for

87 Asia Foundation 2015.

Phnom Penh addresses environmental and climate change risk along the entire solid waste management value chain in Phnom Penh to reduce greenhouse gas emissions from landfill sites and other unsustainable waste disposal behavior. The implementation of the strategy would result in a cleaner city, with less hazardous waste, with more amenity and less odour. The city’s emissions could be reduced by over 250,000 t of CO2-e annually by 2024.

Outstanding challenges and constraints
The entire urban waste management system in Phnom Penh needs to be improved, from the point of waste generation to final disposal. At the household and commercial points of generation, waste needs to be separated at the source to enable any type of efficient recycling, composting or waste-to-energy conversion. Furthermore, waste is not collected in all parts of the city since Cintri is unable to physically access certain parts of the inner city core and does not have facilities for servicing outer peri-urban areas.

Other challenges include the need for construction and operation of a technically sound waste disposal landfill facility, with potential for waste composting and waste-to-energy conversion facilities. The old waste dump at Steung Mean chey, which had been in operation since 1965, has had continuous trash fires. This facility has become overloaded with waste, and thus needs to be closed and decommissioned in an environmentally sound manner.

Since July 2009, a new landfill was opened at Dangkor Landfill with four waste disposal cells (A, B, C and D). The location is 15 km from city center and encompasses an area of about 26 ha. Two cells (A and B) are filled to capacity and Cells C and D were opened in February 2016. The landfill has quickly filled, and there have been observations that it is not operating in a technically sound and environmentally friendly manner. For example, proper waste compaction is not routinely practiced resulting in inefficient use of landfill capacity.

Business-as-usual future of solid waste management
Under a BAU scenario, solid waste collection will continue to be undertaken in a haphazard manner. Trash will accumulate in certain parts of the city, causing unpleasant odours and creating breeding grounds for disease-transmitting vectors. More waste will end up in drainage channels and natural waterways, thereby limiting the water flow capacity during rainfall events.

With no waste recycling, reduction or reuse programs in place, waste generation will increase and disposal sites will become overloaded. While energy demands and prices continue to increase, there will be a lost opportunity for waste-to-energy conversion due to a lack of waste source separation programs.

It is forecasted that waste generation in Phnom Penh will increase from approximately 1,300 tons per day in 2013 to about 2,500 tons per day in 2025 (see Figure 16). On a waste volume basis, it is estimated that current volumes (2013) of 0.4 million m3 will expand to 5.5 million m3 in 2025. With the present waste discharge rate, it is estimated that Dangkor Landfill areas C and D will only have capacity for disposal from 2016 to 2020.89

89 Asia Foundation 2015.
Figure 16. Phnom Penh waste generation forecasts per source, 2013-2030

Source: Asia Foundation 2015

4.5.8 Public Space and Cultural Heritage

Historically, Phnom Penh was rich in parks, green areas and cultural heritage buildings and sites. However, the redevelopment of the city since the 1990s has led to much of the green areas and the city’s cultural heritage buildings and sites being either destroyed to make way for new development projects or being left to deteriorate.

The amount of green space and open areas in Phnom Penh has decreased markedly in recent years. According to the Phnom Penh’s Urban Transport Master Plan 2035, Phnom Penh has much less green area per capita than many other densely populated major cities in the world. Phnom Penh has only 1.1 m² green space per person compared to New York City at 29.2 m² per person, and Tokyo at 5.5 m² per person.\(^\text{90}\)

As for the state of public space in Phnom Penh, it should be noted that the Sisowath riverside promenade in the central district has been refurbished into an accessible, landscaped public space, which generates opportunities for urban recreation for residents and many visitors of the area. Various urban public parks, which had run into disrepair, have now been refurbished with landscaped designs.

\(^{90}\) JICA 2014.
Existing policies and regulatory framework
Provisions for the protection of Phnom Penh’s sidewalks are provided in the Sub-Decree #42 on Urbanization of the Capital, Municipalities and Urban Areas. However, enforcement of the sub-decree’s provisions to ensure that new developments provide sufficient parking spaces and enable a sufficient “public right of way” for new buildings can be difficult to enforce. Furthermore, the provisions in the Road Law (2014) and the Road Traffic Law (2015) to reserve sidewalks for pedestrians have also been challenging for local authorities to enforce.

Currently there are no clear zoning by-laws or building preservation regulations to protect these historic structures. Cultural Heritage is managed by the Law on Protection of Cultural Heritage 1996, and by Sub-decree #98 on respecting implementation of cultural heritage protection. According to definitions of cultural heritage listed in the law and its regulation, it is unclear whether architectural structures such as New Khmer Architecture or French Colonial Architecture qualify as cultural heritage sites. There is a need to define regulations for preserving cultural heritage buildings, and to establish mechanisms for financing rehabilitation of cultural heritage.91

Outstanding challenges and constraints
Many critical public spaces such as city sidewalks is entirely taken over by parked cars, motorcycles and informal vendors, making walking in Phnom Penh extremely difficult and sometime dangerous.

91 UNESCO and Municipality of Phnom Penh 2006.
Furthermore, many of the created public spaces are not well designed with regards to water management and natural cooling. Many inner district parks and gardens have been extensively paved with impenetrable materials, which prevent water from being absorbed into the ground.92 Furthermore, the decorative trees and shrubs in these gardens have limited capacity for shading and for water containment.

Many of the historic cultural heritage buildings and sites have been torn down to make way for new urban development projects or have been allowed to deteriorate. These building provide examples of architecture from the French Colonial era and also from the New Khmer Architecture movement of the 1950s and 1960s. Threatened historic buildings include the National Stadium, the old Phnom Penh Police Station, and the historic Renakse Hotel. Not only do these buildings provide cultural identity to the city, but (if restored) they also have the potential for attracting tourists.

Business-as-usual future of public spaces and cultural heritage

With fewer open spaces and greenery in the city, the impacts of climate change and increasing ambient temperatures could exacerbate the urban heat island effect and adversely affect the health of inner city residents. The continued loss or disrepair of cultural heritage sites and buildings will result in a loss of Phnom Penh’s urban identity. With a city anchored in no historical context, tourist will continue to bypass Phnom Penh in favor of culturally attractive Siem Reap or other destinations in Cambodia or the region.

92 Sahmakung Theat Tnaut 2012b.
5 GREEN CITY DEVELOPMENT PRIORITY ACTIONS

This section describes the green growth actions identified from the consultations as necessary to achieve the overall vision, mission, goals and objectives listed in sections 2 and 3 above.

5.1 URBAN PLANNING PRIORITY ACTIONS:

- Dissemination of the Master Plan on Land Use 2035 to determine the future structure of the urban agglomeration, the location of its functions, the density of its built environment, the direction of its growth, and the zoning of its neighborhoods.
- Define protection areas where no infrastructure or building activities may take place (protected natural resources, public spaces, cultural heritage and monuments).
- Direct urban expansion away from areas that are subject to natural and climatic risks such as flooding or coastal erosion.
- Plan for compact, low-carbon urban forms providing for high agglomeration density and for an optimal use of urban infrastructure.
- Minimize urban footprint over agricultural areas.
- Avoid lock-in to costly, energy-inefficient and polluting transport and energy urban systems.
- Provide land for low-income residential areas and concentrate factories away from housing.
- Improve data collection and management as a basis for evidence-based urban policy-making.
- Implement public information campaigns by the local authorities on the planning process.
- Improve local governance and enforcement of urban regulations by all stakeholders.

5.2 URBAN VULNERABILITY PRIORITY ACTIONS:

- The city’s natural lakes, streams and wetlands are protected and not used for further commercial development.
- Green and blue corridors are restored or created throughout the city.
- To capture rainwater, reduce flooding and increase biodiversity, the existing green space per person ratio of 1.1 m² will be doubled.
- Natural hydrological systems will be restored with the intent of multiple uses (fisheries, aquaculture, recreation, and biodiversity enhancement).
- Drainage systems in flood-prone areas are made more robust using an integrated system of rainwater retention, rain water harvesting, restoration of natural hydrological systems, green areas, and engineering structural measures.
- Where feasible, bioengineering using native plant species is used to prevent erosion and capture rain or flood waters.
- Wastewaters generated in inner city areas are treated using at least secondary treatment.
- Decentralized wastewater treatment systems will be operating in poor and vulnerable peri-urban communities.
- Natural and constructed wetlands are used to polish grey wastewater or as a polishing treatment (nutrient and some organic treatment) for secondary treated wastewater.
- Property destruction, loss of life, and economic damages resulting from flooding are reduced in all parts of the city.
• Residents living in highly flood prone or erosion areas are favourably relocated to safer and more secure locations in the city.
• All households in peri-urban areas are using improved and secure household sanitation systems that will prevent pollution dispersion during high rain and flooding events.

5.3 ENERGY PRIORITY ACTIONS:
• GHG emissions are reduced significantly from the current trajectory, at least to the extent that abatement costs are negative, neutral or are otherwise supported by donors, carbon markets or climate finance.
• Energy efficiency audits are conducted as standard practice across all municipal services and properties, energy management plans are instituted, and appropriate energy efficiency measures (and renewable installations) are identified and implemented;
• All electrical appliances and cook-stoves tested and labelled following national standards, energy efficiency labelling is in Khmer;
• Market for energy efficiency services and finance developed in Phnom Penh servicing municipal, commercial and industrial sectors.
• All municipal and other government buildings with suitable roofs have solar PV installed;
• All new government, commercial and industrial buildings have renewable energy installed.
• Time-of-day tariff adopted for the Phnom Penh/Kandal central grid.

5.4 TRANSPORT PRIORITY ACTIONS:
• Comprehensive and integrated traffic management system in place, adequately resourced and staffed.
• Parking regulations are enforced and adequate parking provision made such that all sidewalks in the four central districts of the city are easily passable by pedestrians.
• Introduce sulphur content limits for transportation fuel in line with regional standards (in the region of 50 ppm reduced from current 1,000 ppm).
• A system of daily air quality monitoring (increased from the current three monitoring stations) put in place across the city monitoring for key air pollutants (PM10, PM2.5, SOx, NOx, CO and O3).
• for motorized transport tightened and enforced throughout the city using regular checks on motor vehicles.
• A plan in place to encourage cycle use in the city, including consideration of segregated lanes and cycle paths.
• A system of inducements to encourage the use of low-emission vehicles in place (i.e. those with better emissions performance standards in terms of gCO2/km or similar, hybrid or electrical vehicles).
• Fiscal incentives (taxes, fees and fines) aligned with achieving a greener transportation sector, including discouraging the use of private motorized transportation and encouraging efficient energy use and low-emission vehicles.

5.5 BUILT ENVIRONMENT PRIORITY ACTIONS:
• Affordable low-cost housing is available throughout the city for all socio-economic groups.
• The urban housing profile consists of a mix of modern and traditional architectural styles to maintain Phnom Penh’s distinct cultural and urban identity.
• Housing in peri-urban and low-income areas are more resistant to natural disasters.
• Guidance is available for flood proofing households and commercial enterprises.
• Slum areas are reduced and replaced with low-cost housing using locally available materials, such as bamboo.
• Guidance on constructing or retrofitting energy-efficient housing and buildings is available and being used. As a result, energy demand per household is decreased.
• Household environments in low-income areas are more comfortable and liveable due to improved design and use of natural ventilation and shading.
• New large construction projects dedicate sufficient space for green and blues corridors, and adhere to green building standards administered by the building industry.
• The recent law on urbanization is enforced with regards to allocating sufficient open space on construction plots for green and permeable surfaces.

5.6 MANUFACTURING PRIORITY ACTIONS:
• Energy efficiency, water use and pollution emissions regulations in place – Statutory plans and regulations in place to ensure energy efficiency, water use efficiency and pollution emission standards are in place for the manufacturing sector, including monitoring and enforcement mechanisms.
• Monitoring and enforcement capacity in place in city departments for the sector – PPDOE has capacity to monitor and enforce pollution emissions standards in the manufacturing sector. PPDIH has capacity to conduct energy audits at manufacturing industry.
• Access to funding for energy efficiency and pollution control – Capital facilities in place for lending to energy efficiency and pollution control projects in the manufacturing sector.
• Energy service company (ESCO) – establishment of an energy use service company in the city to enable energy and resource use efficiency at manufacturing enterprises.
• Waste water treatment plants – All water pollution emitters in the manufacturing sector must be connected to a waste water treatment plant.
• Resource use assessment – Resource use assessments conducted for major industrial sectors in the city, looking in particular at material flows and opportunities for using waste flows from some industries as inputs into other industries.
• Increase green jobs – in the manufacturing sector, including in the production of green handicrafts.

5.7 SOLID WASTE MANAGEMENT PRIORITY ACTIONS:
• Each district has the resources and capacity to manage waste collection companies.
• A competitive market is established in order for districts to select waste collection companies most suitable for their respective waste management requirements.
• In some outer districts, cooperatives are formed to collect wastes if it is not economical or feasible for a waste contractor to do so.
• Public awareness campaigns are established to instruct households, commercial enterprises and markets of methods for waste separation and respective environmental benefits.
• Source separation is also stimulated via a regulated and profit-making formal recycling industry, including establishment of employment for most workers from the informal waste collection and recycling sector.
• The benefits of source separation are realized through waste-to-energy conversion or composting.
• A public awareness campaign is launched to inform citizens of alternatives to plastic bag use and the environmental consequences of continued plastic bag use.
- Plastic bags are banned and replaced with reusable bags.
- A network of temporary storage sites and final disposal landfills are constructed to manage all waste that cannot be reused, recycled or repaired.

5.8 PUBLIC SPACES AND CULTURAL HERITAGE PRIORITY ACTIONS:

- Public parks, gardens, and green / blue corridors are significantly expanded throughout the city.
- Some existing public areas are redesigned and reconstructed to include more shade trees, biodiversity, permeable surfaces and rain capturing vegetation to manage rain runoff.
- The urban heat island effect is measurably reduced through establishment of more green areas.
- More multi-functional recreational areas are developed to support exercise, sport activities and socializing.
- Historic cultural heritage sites and buildings in Phnom Penh are preserved and renovated, including the National Stadium, the old Police Station, and the Renakse Hotel.
- Regulations are enacted and enforced to protect and renovate key cultural heritage buildings and sites.
- A city or national budget, supported by tourist fees or other user fees, is established to preserve cultural heritage buildings and sites.
- Tourism campaigns featuring cultural heritage promotion and awareness.
A list of 48 green city development projects was proposed to address the current shortcomings of the eight key urban sectors. The underlying assumption is that the transformation of Phnom Penh into a green, sustainable city is going to be a long-term process, which cannot be accomplished in less than two decades, or by 2035. Detailed concept notes have been developed for each of these 48 projects.

<table>
<thead>
<tr>
<th>SECTOR</th>
<th>PROJECT TITLE</th>
<th>TIME FRAME</th>
<th>IMPLEMENTING INSTITUTIONS</th>
<th>ALIGNMENT WITH PHNOM PENH MASTERPLANS</th>
<th>GREEN GROWTH OBJECTIVES PURSUED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban Planning</td>
<td>1. Detailed land-use and zoning plan for Daun Penh District
The detailed land-use and zoning plan for the Daun Penh District will protect streetscapes, building stock and public areas of critical importance to the identity of the city. It will improve the livability and functionality of the area, and increase its attractiveness to residents and visitors alike.</td>
<td>Short Term</td>
<td>PPCH, MLMUPC, District and commune authorities, civic association for cultural heritage, local businesses and architecture universities</td>
<td>Phnom Penh Master Plan on Land Use 2035 _Action Plan 3</td>
<td>- Define protection areas where no infrastructure or building activities may take place (areas at risk, protected natural resources, public spaces, cultural heritage and monuments)
- Improve local governance and enforcement of urban regulations by all stakeholders.</td>
</tr>
<tr>
<td>Urban Planning</td>
<td>2. Detailed land-use and zoning plan for Takmao growth pole
The plan will ensure a robust urban future for Takmao’s expansion; it will also ensure that urban transport and land-use are planned hand-in-hand, to optimize the use of urban infrastructure. According the approved Master Plan on Land Use 2035, Takmao is slated to become one of the major four urban growth poles within the agglomeration.</td>
<td>Short Term</td>
<td>PPCH, MLMUPC, Provincial authorities (including at district and commune levels)
Universities (CIUS)</td>
<td>Phnom Penh Master Plan on Land Use 2035 _Action Plan 3</td>
<td>- Determine the future structure of the urban agglomeration, the location of its functions, the density of its built environment, the direction of its growth, and the zoning of its neighborhoods.
- Plan for compact, low-carbon urban forms providing for high agglomeration density.</td>
</tr>
<tr>
<td></td>
<td>3. Planning of new industrial zones and clusters
The planning of new industrial zones and clusters will be guided by issues of competitiveness, urban resilience, urban traffic flows, as well as by the goal of concentrating them away from residential areas in order to protect public health. Manufacturing</td>
<td>Medium Term</td>
<td>PPCH, MLMUPC, MIH, GMAC, CDC.</td>
<td>Phnom Penh Master Plan on Land Use 2035 _Action Plan 3</td>
<td>- Minimize urban footprint over agricultural areas
- Improve local governance and enforcement of urban regulations by all stakeholders.</td>
</tr>
</tbody>
</table>
processes would be organized around clean production principles.

4. Creation of urban land reserves for low-income housing
The creation of urban land reserves implies the a) identification of state private land that can be set-aside for residential purposes; and b) the acquisition of privately owned land, be it agricultural or otherwise. The creation of land reserves will entail institutional arrangements, financial resources to be made available by the Government, and a clear identification of the mechanisms for the allocation of the land to specific low-income housing development schemes.

5. Validation of Master Plan for Land Use for metropolitan Phnom Penh.
This validation process will be a major step in ensuring the credibility and reliability of local governance. It will require specialized resources and dedicated skills, as well as a functional information system to present, convey proposals, and record feedback.

6. Study of metropolitan management arrangements for the capital city.

<table>
<thead>
<tr>
<th></th>
<th>Duration</th>
<th>Implementing Bodies</th>
<th>Master Plan/Policy Reference</th>
<th>Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Avoid lock-in to costly, energy-inefficient, and polluting urban systems</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Provide land for low-income residential areas and concentrate factories away from housing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Improve coordination and transparency of the planning process, with participation of all stakeholders and the public (particularly those directly affected by planning decisions).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Implement public information campaigns by the local authorities on the planning process.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Improve local governance and enforcement of urban regulations by all stakeholders.</td>
</tr>
</tbody>
</table>
The study will: a) review relevant international experience with metropolitan management in low-income and low-middle income countries; b) look at institutional, legal and fiscal options possible in the current Cambodian context; c) conduct consultations with relevant stakeholders; and d) offer recommendations and options to construct a roadmap for reform.

<table>
<thead>
<tr>
<th>Urban Vulnerability</th>
<th>7. Improved household sanitation systems in peri-urban areas.</th>
<th>Short Term</th>
<th>Phnom Penh Master plan on Land Use 2035 - Action Plan 2, 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The project would demonstrate the use of a low-cost household sanitation system using simple technology for containing wastes and limiting human waste dispersion and public health threats during flooding events. An Eco-san toilet or a similar design could be used in the demonstration area.</td>
<td>PPCH, MPWT, Development partners, such as People in Need, STT, UNICEF, WaterAID.</td>
<td>• All households in peri-urban areas are using improved and secure household sanitation systems that will prevent pollution dispersion during high rain and flooding events.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The project would demonstrate the feasibility and affordability of using a decentralized treatment system in a peri-urban area not covered by the Phnom Penh’s forthcoming centralized treatment facility. Small-scale decentralized systems can be mass-produced and easily installed, and the highly treated water can be discharged locally.</td>
<td>PPCH, MPWT, MIH, MLMUPC, MOE, Phnom Penh District and commune authorities NGOs, such as BORDA</td>
<td>• In peri-urban areas, affordable decentralized wastewater treatment systems are being demonstrated in smaller communities for possible replication in other outlying areas.</td>
</tr>
<tr>
<td>Demonstration</td>
<td>Term</td>
<td>Organization</td>
<td>Master Plan/Project</td>
</tr>
<tr>
<td>--</td>
<td>------------</td>
<td>--------------------</td>
<td>--</td>
</tr>
<tr>
<td>9. Demonstration of a redesign of an existing park area for improved water retention and cooling</td>
<td>Short Term</td>
<td>PPCH, MLMUPC, MOE</td>
<td>Phnom Penh Master Plan on Land Use 2035 Action Plan 3</td>
</tr>
<tr>
<td>Several parks and gardens have been extensively paved with impenetrable materials that prevent water from being absorbed into the ground. The project would remove some trees and shrubs and replace them with native species that are more efficient in water capture and retention.</td>
<td></td>
<td></td>
<td>Phnom Penh Drainage and Sewerage Master Plan 2035</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Master plan on Land Use 2035 Action Plan 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Phnom Penh Master Plan for Drainage and Sewerage</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Law on Environmental Protection and Natural Resources Management – sub-decree on Water Pollution</td>
</tr>
<tr>
<td>10. Demonstration of a small scale constructed wetland for wastewater treatment.</td>
<td>Short Term</td>
<td>PPCH, MOE, WaterAID</td>
<td>Master plan on Land Use 2035 Action Plan 4</td>
</tr>
<tr>
<td>Phnom Penh has several natural wetland areas that have historically served as natural wastewater treatment systems. The project would demonstrate the feasibility of constructing a wetland for wastewater treatment on a relatively small scale for possible replication in other areas.</td>
<td></td>
<td></td>
<td>Phnom Penh Drainage and Sewerage Master Plan 2035</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Master plan on Land Use 2035 Action Plan 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Phnom Penh Master Plan for Drainage and Sewerage</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Law on Environmental Protection and Natural Resources Management – sub-decree on Water Pollution</td>
</tr>
<tr>
<td>11. Regulations, zoning, safeguards to protect blue / green areas</td>
<td>Medium Term</td>
<td>PPCH, MLMUPC</td>
<td>Master plan on Land Use 2035 Action Plan 4</td>
</tr>
<tr>
<td>Phnom Penh’s Master Plan on Land Use 2035 includes development goals to preserve natural systems such as lakes and wetlands and creating green areas within the city. The project would prepare a set of land use zoning regulations and safeguards identifying critical blue and green areas for conservation.</td>
<td></td>
<td></td>
<td>Phnom Penh Drainage and Sewerage Master Plan 2035</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>National Urban Development Strategy</td>
</tr>
</tbody>
</table>
| Energy | 12. Downscaling climate change threat forecast for Phnom Penh | Short Term | PPCH, NCSD, MOE, MOWRM Universities | Master plan on Land Use 2035, Master Plan for Drainage and Sewerage 2035, Cambodia Climate Change Strategic Plan 2014-2023 | - Natural hydrological systems are restored with the intent of multiple uses (fisheries, aquaculture, recreation, and biodiversity enhancement).
- Drainage systems in flood prone areas are more robust using an integrated system of rainwater retention, rainwater harvesting, restoration of natural hydrological systems, green areas, and engineering structural measures. |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>13. Pilot energy efficient street lighting</td>
<td></td>
<td>Short Term</td>
<td>PPCH, NCSD, MME, EDC Private sector</td>
<td>NSDP 2014 - 2018, Energy efficiency Policy, Strategy, and Action Plan INDC targets, Cambodia Climate Change Strategic Plan 2014-2023</td>
<td>- Energy efficiency audits are conducted as standard practice across all municipal services and properties, energy management plans are instituted, and appropriate energy efficiency measures (and renewable installations) are identified and implemented</td>
</tr>
</tbody>
</table>

12. Downscaling climate change threat forecast for Phnom Penh

The project would consist of downscaling climate data from IPCC scenarios, Global General Circulation Models, Regional Climate Models, and Weather Research and Forecasting Models to the Phnom Penh area and then using downscaled data as input to standard hydrological and flood drainage models.

Drainage systems in flood prone areas are more robust using an integrated system of rainwater retention, rainwater harvesting, restoration of natural hydrological systems, green areas, and engineering structural measures.

13. Pilot energy efficient street lighting

Street lighting in Phnom Penh has significant potential for energy efficiency upgrades and the installation of energy efficient lighting in new developments. Three main options for improving lighting efficiency include: 1. Replacement of conventional lighting with LED street lighting; 2. Retrofit/install dimmable ballasts to existing/planned metal halide and sodium vapor lamps to improve energy efficiency, control of
lighting; and 3. Smart control/lighting management systems for 1 and 2.

14. Labelling for energy efficient appliances

The project would support, 1) the development of a labeling system; 2) capacity development for testing and labeling energy efficient products; 3) enforcement of the labeling and testing regime; 4) awareness raising among consumers and retailers.

<table>
<thead>
<tr>
<th>Phase</th>
<th>Lead Implementers</th>
<th>Timeframe</th>
<th>Key Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short Term</td>
<td>PPCH, NCSD, MME</td>
<td>NSDP 2014 – 2018</td>
<td>• All electrical appliances and cook-stoves tested and labelled following national standards; energy efficiency labelling is in Khmer.</td>
</tr>
<tr>
<td></td>
<td>Private sector</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

15. Promotion of Solar Water Heaters

Solar thermal technology can be used to provide hot water for domestic and industrial uses. This project aims to provide a revolving fund to support the implementation of this technology at private households, hotels and commercial establishments.

<table>
<thead>
<tr>
<th>Phase</th>
<th>Lead Implementers</th>
<th>Timeframe</th>
<th>Key Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short Term</td>
<td>PPCH, MME, MIH, NCSD</td>
<td>NSDP 2014 - 2018</td>
<td>• All new government, commercial and industrial buildings have renewable energy installed;</td>
</tr>
<tr>
<td></td>
<td>Development partners, such as EDC, World Bank / IFC, ADB.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

16. Energy Service Company (ESCO) for Roof-top solar PV at municipal buildings

Developing an ESCO to finance, supply, install and operate the technology is a common approach to overcome barriers to technology implementation from risks relating to energy price, technology performance, installation and achieving financing for the project.

<table>
<thead>
<tr>
<th>Phase</th>
<th>Lead Implementers</th>
<th>Timeframe</th>
<th>Key Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short Term</td>
<td>PPCH, NCSD, MME, EDC</td>
<td>NSDP 2014 - 2018</td>
<td>• All municipal and other government buildings with suitable roofs have solar PV installed</td>
</tr>
<tr>
<td></td>
<td>Private sector</td>
<td></td>
<td>• All new government, commercial and industrial buildings have renewable energy installed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

17. Hybrid diesel solar generation for large industrial users

Large industrial electricity users often use isolated or back-up HFO/diesel generation to replace or supplement grid-based electricity. The project would promote the use of hybrid solar diesel technology as a more cost-effective and

<table>
<thead>
<tr>
<th>Phase</th>
<th>Lead Implementers</th>
<th>Timeframe</th>
<th>Key Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium Term</td>
<td>PPCH, MME, MIH, EDC, EAC, NCSD</td>
<td>INDC Garment manufacturing NAMA</td>
<td>• All new government, commercial and industrial buildings have renewable energy installed</td>
</tr>
<tr>
<td></td>
<td>Private sector</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
environmentally benign alternative to HFO and diesel generation.

18. ‘Super ESCO’ for public sector energy services in Phnom Penh
This project is to develop a super ESCO under an appropriate public institution in Phnom Penh, possibly EdC. A Super ESCO is a publicly owned entity created by the government that serves as an ESCO for the public (hospitals, schools, municipalities, government buildings and other public facilities).

<table>
<thead>
<tr>
<th>18. ‘Super ESCO’ for public sector energy services in Phnom Penh</th>
<th>Medium Term</th>
<th>PPCH, MME, EDC, NCSD</th>
<th>National Energy Efficiency Policy, Strategy, and Action Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Private sector</td>
<td>INDC, Second National Communication to the UNFCCC</td>
<td>Cambodia Climate Change Strategic Plan 2014-2023</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Energy efficiency audits are conducted as standard practice across all municipal services and properties, energy management plans are instituted, and appropriate energy efficiency measures (and renewable installations) are identified and implemented;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Market for energy efficiency services and finance developed in Phnom Penh servicing municipal, commercial and industrial sectors.</td>
</tr>
</tbody>
</table>

19. Policy and institutional support for renewable electricity generation
The policy development package would include a number of research components aimed at investigating appropriate policy approaches (e.g. feed-in tariff levels, suitable time-of-day tariff regime, etc.), as well as development of institutional and legislative reforms.

<table>
<thead>
<tr>
<th>19. Policy and institutional support for renewable electricity generation</th>
<th>Short Term</th>
<th>PPCH, MME, EDC, NCSD, EAC</th>
<th>Energy Efficiency Policy, Strategy, and Action Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>National Green Growth Strategic Plan (2013-2030)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>All municipal and other government buildings with suitable roofs have solar PV installed;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>All new government, commercial and industrial buildings have renewable energy installed;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Policy support package in place for renewable energy including net metering, standard PPAs, a grid code and clearly defined off-take tariffs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Feasibility of time-of-day tariff for the Phnom Penh/Kandal central grid investigated and implemented as appropriate.</td>
</tr>
</tbody>
</table>

20. GHG inventory and mitigation modelling for Phnom Penh

<table>
<thead>
<tr>
<th>20. GHG inventory and mitigation modelling for Phnom Penh</th>
<th>Medium Term</th>
<th>PPCH, NCSD, MOWRM</th>
<th>INDC, second national</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>GHG emissions reduction – GHG emissions are reduced</td>
</tr>
</tbody>
</table>
The development of a GHG emissions inventory and more robust GHG emissions projections and mitigation scenarios would enable the city to 1. Identify cost-effective mitigation opportunities; 2. Develop a robust MRV mechanism; 3. Better account for emissions reductions in mitigation projects and programs; and, therefore 4. Enable the mobilization of carbon finance for project investment.

| Transport | 21. Promotion of Solar Tuk-Tuks | Short Term | Phnom Penh Transport Master Plan_ Action 1
| | Electrical tuk-tuks for passenger transport or light freight transport with lead-acid or lithium ion batteries changed by solar PV integrated into the roof of the vehicle represent a potentially viable alternative to conventional tuk-tuks using gasoline. | PPCH, MME, MPWT | National Energy Efficiency Policy, Strategy and Action Plan
National Green Growth Policy (2013)
National Green Growth Strategic Plan (2013-2030) |
| | | | • Low emissions vehicles – system of inducements to encourage the use of low emissions vehicles (i.e. those with better emissions performance standards).
• Transportation fiscal incentives — Fiscal incentives (taxes, fees and fines) aligned with achieving a greener transportation sector – taxes, fees and charges in the city discourage use of private motorized transportation, encourage efficient energy use and low emissions vehicles. |
| 22. Promotion of e-bikes | Medium Term | Phnom Penh Transport Master Plan 2035_ Action 1
| | E-bikes are a proven and increasingly common technology. There are potential synergies with the expansion of renewable energy generation. This project proposes to promote the expansion in use of e-bikes while at the same time addressing concerns related to safety thorough an integrated policy package. | PPCH, MoE, MPWT | National Energy Efficiency Policy, Strategy and Action Plan
National Green Growth Policy (2013) |
| | | | • Low emissions vehicles – system of inducements to encourage the use of low emissions vehicles (i.e. those with better emissions performance standards).
• Transportation fiscal incentives – Fiscal incentives (taxes, fees and fines) aligned with achieving a greener transportation sector – taxes,
23. Parking support package for Phnom Penh

In many places parked cars and motorbikes and encroachment by commercial activities make sidewalks impassable. This project envisages a package of measures to better regulate parking.

<table>
<thead>
<tr>
<th>Medium Term</th>
<th>PPCH, MLMUPC, MPWT, Phnom Penh District and Commune authorities</th>
<th>Phnom Penh Transport Master Plan 2035_ Action 3</th>
</tr>
</thead>
</table>

- Pedestrian environment – Parking regulations are enforced and adequate parking provision made such that all sidewalks in the four central districts of the city are easily passable by pedestrians.

24. Piloting pedestrianized areas

This project would support i) A consultative and awareness raising process involving residential and commercial residents, urban planners, district and city administrations and the transportation authorities, highlighting the advantages of such a scheme and addressing local concerns; ii) trialing road closures for pedestrian only access during established time windows; iii) redesigning infrastructure to enhance area for pedestrians and commerce.

|-------------|---------------------|---|

- Pedestrian environment – Parking regulations are enforced and adequate parking provision made such that all sidewalks in the four central districts of the city are easily passable by pedestrians.

25. Air Quality Monitoring

This project seeks to develop a more extensive air quality monitoring system with adequate capacity to maintain the system at Phnom Penh Department of Environment with support from MOE.

<table>
<thead>
<tr>
<th>Medium Term</th>
<th>PPCH, MOE</th>
<th>Phnom Penh Transport Master Plan 2035</th>
</tr>
</thead>
</table>

- Air quality - A system of daily air quality monitoring (increased from the current 3) put in place across the city monitoring for key air pollutants (PM10, PM2.5, SOx, NOx, CO and O3);
- Emissions standards for motorized transport tightened and enforced throughout the city using regular checks on motor vehicles.
26. Investigation of changes in fuel quality standards for transport fuels

The proposed study will look at the potential for tightening controls on fuel quality including:

i) Assessment the impact of poor quality transport fuels on air quality in urban areas;

ii) Assess the enforcement and testing system for transportation fuels in Cambodia;

iii) Assess the availability of cleaner transportation fuels and perform a cost comparison with current fuels;

iv) Develop a roadmap for the introduction of cleaner transportation fuel standards.

Short Term

- PPCH, MLMUPC, MPWT, MOC, NCSD
- Private sector

National Green Growth Policy (2013)

- National Green Growth Strategic Plan (2013-2030)

- Fuel standards – Introduce sulphur content limits for transportation fuel in line with regional standards.

- Air quality - A system of daily air quality monitoring (increased from the current 3) put in place across the city monitoring for key air pollutants (PM10, PM2.5, SOx, NOx, CO and O3);

27. Pilot Demonstration of Low cost Sustainable housing

The project would demonstrate the feasibility of using low cost home construction in peri-urban areas using low-cost locally available sustainable materials.

Built Environment

Short Term

- PPCH, MLMUPC
- Habitat for Humanity and Building Trust,
- Green Business Forum (EUROCHAM),
- Sahmakum Teang Tnaut (STT)

National Housing Policy (2014)

National Green Growth Policy (2013)

National Green Growth Strategic Plan (2013-2030)

- Affordable low cost housing is available throughout the city for all socio-economic groups.

- The urban housing profile consists of a mix of modern and traditional architectural styles.

- Housing in peri-urban and low-income areas is more resistant to natural disasters.

- Slum areas are reduced and replaced with low cost housing using locally available materials, such as bamboo.

- Household environments in low-income areas are more comfortable and livable due to improved design and use of natural ventilation and shading.

28. Demonstration of renovation of a cultural heritage building for commercial purposes using energy efficient and green building designs

The project would renovate an old cultural heritage building – either French Colonial or New Khmer Architecture – for commercial purposes using energy efficient and green building designs

Built Environment

Short Term

- PPCH, MCFA, MME

Possible linkage to proposed Cambodia Legal Building Code being considered by MLMUPC

- Guidance on constructing or retrofitting energy efficient commercial green building is available and being used. As a result, energy demand per household is decreased.
energy efficiency and green building concepts with the ultimate goal of enabling the property to receive a Leadership in Energy and Environmental Design (LEED) building certification.

29. Household flood-proofing guidelines

Flooding occurs on a regular or seasonal basis for many households and small businesses in Phnom Penh. Flood proofing guidelines can provide information on how to make households more resilient to flooding. The guidelines could consist of the following flood adaptation techniques.

<table>
<thead>
<tr>
<th>Term</th>
<th>Agency</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium Term</td>
<td>PPCH, MLMUPC, MME, NCSD, EuroCham Green Business Committee Construction Associations</td>
<td>National Policy, Strategy and Action Plan on Energy Efficiency. Possible linkage to proposed Cambodia Legal Building Code being considered by MLMUPC.</td>
</tr>
</tbody>
</table>

30. Guidelines for constructing energy- and resource-efficient buildings (residential and commercial)

Energy-efficient guidelines could address the following energy conservation and energy efficiency measures: building orientation and size of structural openings to promote natural ventilation, window glazing to reduce solar irradiation, window over-shading / automated louvered windows to decrease solar penetration, solar water heating, solar electrical generation, smart energy management systems, use of thermal insulation materials, and energy efficient lighting fixtures.

<table>
<thead>
<tr>
<th>Term</th>
<th>Agency</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium Term</td>
<td>PPCH, MLMUPC, MME, NCSD, EuroCham Green Business Committee Construction Associations</td>
<td>National Policy, Strategy and Action Plan on Energy Efficiency. Possible linkage to proposed Cambodia Legal Building Code being considered by MLMUPC.</td>
</tr>
</tbody>
</table>

31. Flood management guidelines for property development

The guidelines could consist of the following rainwater management measures: optimum types

<table>
<thead>
<tr>
<th>Term</th>
<th>Agency</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium Term</td>
<td>PPCH, MLMUPC, NCDM</td>
<td>2015 sub-decree on urbanization; INDC; Cambodia Climate</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>32. Development of water pollution control fund</td>
<td>Medium Term</td>
</tr>
<tr>
<td></td>
<td>This project will provide long-term finance for environmental protection projects at manufacturing industry in the city through the development of a revolving fund and technical support facility.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>33. Efficient water use pilot in PPSEZ</td>
<td>Short Term</td>
</tr>
<tr>
<td></td>
<td>There is significant potential to reduce water use at manufacturing industries, resulting in lower water bills, reduced energy demands and lower levels of waste water emissions. Water use reductions can be realized through modification of existing processes and management techniques, the application of new more efficient technology and the reduction in water losses through leaky pipes and valves.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>34. Pilot ESCO in PPSEZ</td>
<td>Short Term</td>
</tr>
</tbody>
</table>
35. Pilot to Improve Access to Finance for EE at SMES (Training/Seed Capital Fund at Commercial Banks)
Some of the main barriers facing cleaner and more efficient production in Cambodian manufacturing enterprises (especially SMEs) are access to finance and access to high quality, affordable technical services. This project would seek to increase the amount of financing available on suitable terms for energy efficiency and cleaner production projects at manufacturing enterprises in Phnom Penh.

<table>
<thead>
<tr>
<th>Short Term</th>
<th>PPCH, MIH, MME, NCSD Commercial Banks, SMEs Investors</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIDP_6.2, 6.3 Manufacturing NAMA, Cambodia’s INDC Climate Change Action Plan for MIH Cambodia Climate Change Strategic Plan 2014-2023</td>
<td></td>
</tr>
<tr>
<td>• Access to funding for energy efficiency and pollution control - Capital facilities in place for lending to energy efficiency and pollution control projects in the manufacturing sector</td>
<td></td>
</tr>
</tbody>
</table>

36. Study on Waste Exchange Potential across industrial sectors with special focus on Special Economic Zone
This study would look at the potential for recycling by-products from manufacturing to be used as inputs in different industries. Examples might include the use of slag from steel production in cement production, the production of bricks from various manufacturing residues etc.

<table>
<thead>
<tr>
<th>Short Term</th>
<th>PPCH, MIH, MoE, NCSD Private Sector Development partners, such as UNIDO, Nexus Universities</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Resource use assessment – resource use assessments conducted for major industrial sectors in the city, looking in particular at material flows and opportunities for using waste flows from some industries as inputs into other industries.</td>
<td></td>
</tr>
</tbody>
</table>

37. Green manufacturing at village handicap industrial clusters
This study would seek to investigate the potential for developing a “one village one product” model of handicraft villages that have been successful elsewhere in the region, with an additional emphasis on the potential for green production.

<table>
<thead>
<tr>
<th>Medium Term</th>
<th>PPCH, MIH Private sector associations for handicrafts</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Increase green jobs – in the manufacturing sector, including in the production of green handicrafts.</td>
<td></td>
</tr>
</tbody>
</table>

38. Study on pollution loads and hazardous waste management in the manufacturing sector
This project would i) develop comprehensive estimates of pollution loads and toxicities and their geographical distribution in the city; ii) Ground truth estimates through monitoring at selected sites; iii)

<table>
<thead>
<tr>
<th>Short Term</th>
<th>PPCH, MIH, MoE</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSDP 2014 – 2018. National Environment Strategy and</td>
<td></td>
</tr>
<tr>
<td>• Energy efficiency, water use and pollution emissions regulations in place – Statutory plans and regulations in place to ensure energy efficiency,</td>
<td></td>
</tr>
</tbody>
</table>
Estimate impact on environmental quality (air, water, solid waste and hazardous waste) and identify pollution hot-spots; iv) Ground-truth impact estimates with measurements at selected sites; v) Conduct an audit of pollution control technologies and management practices in the city; vi) Review legislation in light of findings and make proposals for improved environmental protection through improved legislative safeguards, enforcement and monitoring regimes.

Action Plan (NESAP) 2016-2023

Cambodia Industrial Development Policy 2015-2025

- 6.2, 6.3

Water use efficiency and pollution emission standards in place for the manufacturing sector, including monitoring and enforcement mechanisms.

- Monitoring and enforcement capacity in place in city departments for the sector.

Solid Waste Management

39. Waste source separation and 4R pilot demonstration in one district.

The project would establish a waste source separation pilot demonstration in one district including undertaking a public awareness campaign, supplying containers for waste separation, establishing separated waste collection points, and identifying options for recycling and composting the reusable components of the separated wastes.

Short Term

- PPCH, MoE, Phnom Penh District and commune authorities
- NGOs and development partners working on waste management, such as Nexus, IGES and UNEP

Phnom Penh Master plan on Land Use 2035_Action Plan 2

- Environmental Guidelines on Solid Waste Management
- Law on Environmental Protection and Natural Resource Management
- Sub-decree on Solid Waste Management

- Waste source separation is practiced by most households, markets and commercial enterprises in the city.
- Public awareness campaigns are established.
- Source separation also stimulates a regulated and profit making formal recycling industry.
- The benefits of source separation are realized through waste-to-energy conversion or composting, with at least a 50% reduction in organic waste being transported to landfills.
- The 4R principle (reduce, reuse, repair, recycle) is implemented.

40. Pilot demonstration of waste-to-energy conversion

The project would undertake a waste-to-energy conversion demonstration in a pilot district practicing waste source separation. The organic and combustible component of municipal wastes will be burned in a specially designed incinerator for producing steam and ultimately electricity.

Medium Term

- PPCH, MME, MOE, NCSD, Phnom Penh district authorities
- Private sector

Rectangular Strategy Phase III,

- Electricity Law of the Kingdom of Cambodia

- Waste source separation is practiced by most households, markets and commercial enterprises in the city.
- Public awareness campaigns are established.
- The benefits of source separation are realized through...
41. Solid Waste Management Strategy for Phnom Penh

The project will prepare a Solid Waste Management Strategy for Phnom Penh that will define coordinating mechanisms between districts, which may include possibilities for districts to join together as cooperative units to manage their respective solid wastes.

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Responsible Parties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short Term</td>
<td>PPCH, MoE, Phnom Penh district authorities, NGOs and development partners working on waste management, such as Nexus, IGES and UNEP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Deliverables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phnom Penh Master plan on Land Use 2035 _Action Plan 2</td>
</tr>
<tr>
<td>Environmental Guidelines on Solid Waste Management;</td>
</tr>
<tr>
<td>Law on Environmental Protection and Natural Resource Management;</td>
</tr>
<tr>
<td>Sub-decree on Solid Waste Management</td>
</tr>
</tbody>
</table>

- The 4R principle (reduce, reuse, repair, recycle) is implemented.
- Scheduled solid waste collection is expanded to cover all districts of Phnom Penh.
- Each district has the resources and capacity to manage waste collection companies.
- The 4R principle (reduce, reuse, repair, recycle) is implemented and collected waste is reduced by about a fifth.
- A public awareness campaign is launched to inform citizens of alternatives to plastic bag use and the environmental consequences of continued plastic bag use.

42. Regulations for Banning Use of Plastic Bags

The project would draft a single-use plastic bag ban regulation, for inclusion in the Environmental Protection and Natural Resources Management Act, sub-decree on Solid Waste Management. The scope of the regulation would include all markets, restaurant, and other retailers. Exceptions to the ban could be made for containing large bulk items.

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Responsible Parties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short Term</td>
<td>PPCH, MoE, Phnom Penh district authorities, Development partners such as EU and ACRA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Deliverables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental Guidelines on Solid Waste Management;</td>
</tr>
<tr>
<td>Law on Environmental Protection and Natural Resource Management;</td>
</tr>
<tr>
<td>Sub-decree on Solid Waste Management</td>
</tr>
</tbody>
</table>

- The 4R principle (reduce, reuse, repair, recycle) is implemented and collected waste is reduced by about a fifth.
- Plastic bags are banned and replaced with reusable bags.
- A public awareness campaign is launched to inform citizens of alternatives to plastic bag use and the environmental consequences of continued plastic bag use.
<table>
<thead>
<tr>
<th>43. District level Capacity Building for Solid Waste Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>The project would undertake a waste management capacity building training program in one pilot district of Phnom Penh, for future replication in others. The capacity building program would include all aspects of waste management including establishing collection tariffs, financial management, customer service, and waste contractor management.</td>
</tr>
<tr>
<td>Short Term</td>
</tr>
<tr>
<td>Environmental Guidelines on Solid Waste Management, Law on Environmental Protection and Natural Resource Management; Sub-decree on Solid Waste Management</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>44. Multi-functional recreational park</th>
</tr>
</thead>
<tbody>
<tr>
<td>The project would design the landscape into a multi-use public park area with exercise, skateboarding and relaxing facilities. The public area would also be designed with a green canopy for shading and planted with vegetation and shrubbery for water retention.</td>
</tr>
<tr>
<td>Short Term</td>
</tr>
<tr>
<td>Phnom Penh Master plan on Land Use 2035 Action Plan 2, 3</td>
</tr>
</tbody>
</table>

- Public parks, gardens, and green / blue corridors are significantly expanded throughout the city.
- Some existing public areas are redesigned and reconstructed to include more shade trees, biodiversity, permeable surfaces and rain capturing vegetation to manage rain runoff.
- The urban heat island effect is measurably reduced through establishment of more green areas.
- More multi-functional recreational areas are developed to support exercise, sport activities and socializing.

<table>
<thead>
<tr>
<th>45. Demonstration of cultural heritage site restoration</th>
</tr>
</thead>
<tbody>
<tr>
<td>The project would select an unoccupied French Colonial building or a New Khmer Architecture building for demonstration, and then completely</td>
</tr>
<tr>
<td>Short Term</td>
</tr>
<tr>
<td>Phnom Penh Master plan on Land Use 2035 Action Plan 2, 3</td>
</tr>
</tbody>
</table>

- Historic cultural heritage sites and building in Phnom Penh are preserved and renovated, including the National Stadium.
renovate the structure for functional use and
tourism.

<table>
<thead>
<tr>
<th>46. Demonstration of pilot green / blue corridors for multi-functional use</th>
<th>Medium Term</th>
<th>PPCH, MPWT, MOE, MLMUPC</th>
<th>Phnom Penh Master plan on Land Use 2035 _ Action Plan 3</th>
<th>Phnom Penh Master plan on Land Use 2035 _ Action Plan 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>The pilot green / blue corridor would integrate natural hydrological systems into a multi-use recreational and city beautification green and blue area. The multi-use functions could include walking, jogging and cycling paths and nature trails. The pilot area would also increase urban biodiversity and attract many bird species back to the inner city areas.</td>
<td></td>
<td></td>
<td>National Green Growth Policy (2013)</td>
<td>National Green Growth Strategic Plan (2013-2030)</td>
</tr>
<tr>
<td>• Public parks, gardens, and green / blue corridors are significantly expanded throughout the city.</td>
<td></td>
<td></td>
<td>• Some existing public areas are redesigned and reconstructed to include more shade trees, biodiversity, permeable surfaces and rain capturing vegetation to manage rain runoff.</td>
<td>• The urban heat island effect is measurably reduced through establishment of more green areas.</td>
</tr>
<tr>
<td>• Regulations are enacted and enforced to protect and renovate key cultural heritage buildings and sites.</td>
<td></td>
<td></td>
<td>• A city or national budget, supported by tourist fees or other user fees, is established to preserve cultural heritage buildings and sites.</td>
<td>• Tourism in Phnom Penh substantially increases as a result of improved cultural heritage attractions and tourism campaigns featuring cultural heritage promotion and awareness.</td>
</tr>
<tr>
<td>--</td>
<td>-------------</td>
<td>-----------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>The project would draft a Cultural Heritage Preservation Act for Cambodia, modelled after similar legislation in other countries. The Act would define the types of cultural heritage sites and monuments to be protected, stipulate national and sub-national responsibilities, collect documentation and records for all sites, empower a state institution for implementing the Act, and create mechanisms for funding through state, international and private contributions.</td>
<td></td>
<td></td>
<td>- Historic cultural heritage sites and building in Phnom Penh are preserved and renovated. - Regulations are enacted and enforced to protect and renovate key cultural heritage buildings and sites. - A city or national budget, supported by tourist fees or other user fees, is established to preserve cultural heritage buildings and sites. - Tourism in Phnom Penh substantially increases as a result of improved cultural heritage attractions and tourism campaigns featuring cultural heritage promotion and awareness.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>The project would analyse several potential funding mechanisms for cultural heritage preservation in Phnom Penh. Once a suitable funding mechanism has been selected, the project would build upon this mechanism to establish an organizational structure to manage and implement the fund.</td>
<td></td>
<td></td>
<td>- Historic cultural heritage sites and building in Phnom Penh are preserved and renovated. - A city or national budget, supported by tourist fees or other user fees, is established to preserve cultural heritage buildings and sites. - Tourism in Phnom Penh substantially increases as a result of improved cultural heritage attractions and tourism campaigns featuring cultural heritage promotion and awareness.</td>
</tr>
</tbody>
</table>
The proposed 48 projects were ranked by the stakeholders in two consultative workshops in March and April 2016, applying Multi-Criteria Analysis using 10 criteria below:

1. Perceived high need or demand or priority
2. Likely financial support from external sources
3. Cost savings benefits
4. Supportive policy and institutional environment for project implementation
5. Tested technology and/or business model and/or project approach
6. Availability of local operators or suppliers for project implementation
7. High green-growth demonstration effect
8. Poverty reduction or social inclusion benefits
9. Green job creation benefits
10. Environmental benefits.

The following 13 projects were identified as having the highest scores, amongst the 48 projects reviewed. Detailed concept notes have been prepared for each of the priority green city projects and is available in the full text version of this Green City Strategic Plan for Phnom Penh.

Table 5: List of top 13 prioritized projects

<table>
<thead>
<tr>
<th>No.</th>
<th>Project title</th>
<th>Sector</th>
<th>Responsible Institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>‘One Village, One Product’ green handicraft manufacturing</td>
<td>Manufacturing</td>
<td>MIH; PPCH’s DOIH; PP districts and communes authorities.</td>
</tr>
<tr>
<td></td>
<td>Aims to cultivate local manufacturer to develop environmentally sustainable</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>handicrafts, supporting the identification and marketing of products for</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>export and training local communities in business development.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Planning of new industrial zones and clusters</td>
<td>Urban Planning</td>
<td>MLMUPC; MPWT; MIH; PPCH; NCSD’s DGE; CCC; GMAC; other Chambers of Commerce.</td>
</tr>
<tr>
<td></td>
<td>Land-use planning for new industrial zones (of large factories) and of</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>clusters (of small-and medium-size enterprises), in order to maximize their</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>opportunities and minimize their negative impacts.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Policy and institutional support for grid-connected renewable electricity</td>
<td>Energy</td>
<td>MME; EAC; EDC; MEF; NCSD’s DCC and DGE; Solar Energy Association.</td>
</tr>
<tr>
<td></td>
<td>(RE) generation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Implementation of cost-effective policy and institutional measures to</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>promote the adoption of renewable energy in grid-connected areas, such as</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>renewable energy targets, plans for integration of RE into the existing grid</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>infrastructure, development of a grid code, development of standardized</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>power purchase agreements for RE projects, developing net metering</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>arrangements for RE projects, and potentially a feed-in-tariff subsidy regime.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Parking support package for Phnom Penh</td>
<td>Transport</td>
<td>MPWT; PPCH’s DPWT; PPCH’s District Administration; NCSD’s DGE.</td>
</tr>
<tr>
<td></td>
<td>Improved regulatory support framework for parking management, including</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>parking laws, a system of fines, parking fees, and frameworks to enable</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>effective concession agreements with private-sector parking providers.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Demonstration of a decentralized wastewater treatment system in a peri-urban</td>
<td>Urban Vulnerability</td>
<td>PPCH’s DoE and DPWT.</td>
</tr>
<tr>
<td></td>
<td>area</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A successful system that has been demonstrated throughout Asia and Africa is</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the Decentralized Waste</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Demonstration of a redesign of an existing park area for improved water retention and cooling. Redesign of an existing park to improve rainwater retention, water storage, natural treatment, and provide a greener and more extensive canopy cover to provide shade and cooling. The park re-design would be accompanied by communications and awareness raising materials, to impart knowledge on the benefits of green infrastructure and using natural systems for flood protection.</td>
<td>Urban Vulnerability</td>
<td>PPCH’s DoE and DLMUPC.</td>
</tr>
<tr>
<td>7</td>
<td>Household flood-proofing guidelines. The guidelines provide households and businesses with guidance on how to make their buildings more resistant to flooding, including through the following adaptation methods: wet-proofing; dry proofing; elevation raising; and barrier shielding. A public awareness campaign would also be part of the project.</td>
<td>Built Environment</td>
<td>MLMUPC; Sub-national Unit of the National Committee for Disaster Management, PIN, STT, Habitat for Humanity and Building Trust,</td>
</tr>
<tr>
<td>8</td>
<td>Pilot energy-efficient street lighting. Modernization and development of Phnom Penh’s public lighting via a public-private partnership to improve lighting efficiency, either through: (1) replacement of conventional lighting with LED street lighting; (2) retrofit/install dimmable ballasts to existing/planned metal halide and sodium vapour lamps, and (3) smart-control management systems for (1) and (2).</td>
<td>Energy</td>
<td>MPWT; PPCH’s DPWT; MEF; Private sector: Lighting providers such as Phillips Lighting, and GE lighting.</td>
</tr>
<tr>
<td>9</td>
<td>Promotion of solar water heaters. Establishment of a revolving fund to support the dissemination of solar water heaters among private households, hotels and commercial establishments. The fund could be established under the control of the municipality, but managed through an established financial institution (e.g. a commercial bank).</td>
<td>Energy</td>
<td>MME - Center for cleaner production; EDC; IFC - Seed capital; World Bank; ADB; Commercial Banks;</td>
</tr>
<tr>
<td>10</td>
<td>Pilot Energy Services Company (ESCO) in Phnom Penh Special Economic Zone. This project would support the development of a pilot ESCO to support the deployment of energy efficient technologies, with a special focus on Phnom Penh Special Economic Zone (PPSEZ). The ESCO would be designed to address a number of critical barriers to the adoption of energy-efficient technology and practices in manufacturing industries within the zone.</td>
<td>Manufacturing</td>
<td>PPSEZ’s Management Board; EDC; MIH;</td>
</tr>
<tr>
<td>11</td>
<td>Guidelines for constructing energy efficient buildings (residential and commercial). The guidelines would be based on international experience but adapted to the context of Cambodia, and would include energy efficiency measures for construction, water</td>
<td>Built Environment</td>
<td>MLMUPC; MME; Green Business Forum (EUROCHAM); Star 8</td>
</tr>
<tr>
<td></td>
<td>Pilot to Improve Access to Finance for Energy Efficiency at SMES in the manufacturing sector</td>
<td>Manufacturing MIH; MEF; MME; and Commercial Banks.</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>The project would develop a training/seed capital fund at a commercial bank to enable the bank to lend funds for suitable energy efficiency and cleaner production projects in the manufacturing sector. It would be supported by a technical support/advisory facility for the lender to evaluate credit and technical risks involved in such projects, as well as technical support to potential clients to assist with identifying potential investment projects.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Piloting pedestrianized area Pedestrian-only areas would be introduced in several locations in the city center, in Doun Penh district. This project would include a consultative and awareness-raising process involving residential and commercial residents, urban planners and district and city administrations, as well as the transportation authorities. It would trial road closures for pedestrian-only access during established time windows, and re-routing of traffic flows.</td>
<td>Built Environment MPWT; PPCH’s DPWT; PPCH’s District Administration; NCSD’s DGE.</td>
<td></td>
</tr>
</tbody>
</table>
7 GREEN GROWTH SCENARIO

This section develops illustrative future green growth scenarios for the city. It is assumed that demographic, economic and climatological trends as described in Section 2 will remain largely the same. These scenarios represent outcomes of different approaches to urban green growth. Population growth and economic growth are deemed to represent trends that are autonomous of feasible green growth interventions taken in the city prior to 2026. In the longer-term, this might not be the case.

The scenarios developed are qualitative. Given the lack of reliable data or consistent projections for the city, it has not been possible to develop reliable quantitative projections. Nevertheless, these scenarios are deemed to give an overview of the expected benefits of adopting an integrated and comprehensive approach to the pursuit of green growth goals, and serve as a starting point for the development of more sophisticated and robust quantitative projections.

Three scenarios are presented hereunder for the 2026 horizon:

a. Business-as-usual – representing a continuation of currently established trends;

b. Piloting Green Growth – representing the implementation of basic sector reforms already proposed along with the piloting of new greener technologies; and,

c. Mainstreaming Green Growth – representing the implementation of sector reforms, and mainstreaming new green growth technologies and approaches to urban development.

The predicted outcomes for each sector under these scenarios are described in detail below, whilst the development of different green growth indicators under these scenarios is illustrated in Figure 18.

Figure 18. Illustration of different green growth indicators for different scenarios, 2015–2025
BUSINESS-AS-USUAL SCENARIO

The BAU scenario assumes that no major improvement in the sustainable provision of urban infrastructure and services take place between the current time and 2026. This includes the absence of required sectoral reform, including in transport, waste, energy and sanitation. Overall, without any significant changes to urban management, as economic activity and population in Phnom Penh expands, the quality of the living environment will decline, the functionality and competitiveness of the urban area will be compromised and the city will put increasing and unsustainable pressure on national resources. The particular issues projected under a BAU scenario, include the following:

- **Energy consumption** – Energy use will increase rapidly. Growth in transportation demand coupled with an increasingly inefficient transportation system will drive rapid growth in demand for fossil fuels. Demand for electricity is expected to continue growing extremely rapidly from all sectors.

- **Water consumption** – Water use will continue to rise rapidly. Household water consumption will rise with population growth, the extension of supply in peri-urban areas and increased incomes. Growth in manufacturing and structural shifts to more water intensive manufacturing sub-sectors will also lead to increased demand for water.

- **Local air pollution** – Local outdoor air pollution will increase rapidly and air quality is likely to decline. The single largest cause of air quality deterioration is likely to be transport (i.e. traffic congestion). The location of manufacturing industries in close proximity to commercial and residential uses will exacerbate these air quality issues.

- **Water pollution** – Water pollution will increase rapidly. Increased municipal wastewater emissions will be a consequence of increased water consumption in Phnom Penh. As a consequence, water quality in water bodies throughout the city will decline dramatically. All water bodies in the vicinity of the city will be effectively dead.

- **Solid waste** – Volumes of solid waste will increase dramatically. Growth in economic production, a growing population and higher levels of personal consumption will in all likelihood lead to increases in the amount of solid waste produced.

- **Urban form and function** – With no coherent and regulated urban development strategy, the physical structure of the city will continue to develop in ways that impair its function and reduce the quality of life for its inhabitants. Uncontrolled real estate development will have a range of detrimental effects.

- **Poverty and socio-economic development** – Socio-economic trends continue along currently established lines. Poverty remains a persistent problem. With limited low income housing provision in suitable locations the poor and lower income groups will increasingly be forced to live in inappropriate, temporary and semi-permanent dwellings often in the urban periphery or land otherwise marginally suitable for residential development.

Under a BAU scenario, by 2026 the combination of these factors, increased pollution levels, road congestion, and uncontrolled private development will lead to a gradual deterioration in the living environment in Phnom Penh. By 2026 the functionality and competitiveness of the city will start to be seriously impaired. Aspirations to move up the value-chain under the Cambodia Industrial Development Policy 2015-2025 will be hampered and the city will remain a center for low-cost production. Poor infrastructure provision (energy, water, transport, waste) will further compromise competitiveness relative to other low cost countries, making the city’s development progress increasingly precarious. Growth in tourism will be compromised as the city becomes an increasingly unattractive place to visit due to congestion, high pollution levels and the loss of cultural and amenity areas. High-end developments in peri-urban areas will stand empty or under-utilized, locations next to polluting manufacturing industries and open water bodies filled with solid waste and undergoing
eutrophication will be undesirable. Overall, the city’s national function, and the quantity and quality of economic growth will be compromised.

7.2 PILOTING GREEN GROWTH SCENARIO

Under this scenario a number of important plans are implemented covering essential urban services and infrastructure, including the Phnom Penh Transportation Master Plan, the new urban Master Plan, the Master Plan for Drainage and Sewage, plans to upgrade the electricity distribution in the city, and the National Energy Efficiency Policy, Strategy and Action Plan. In addition, some pilot investment projects for green city development are implemented but major sector reforms are not implemented. The particular issues and changes projected under a “piloting green growth” scenario for the city include:

- Energy consumption – Energy use will increase rapidly, with increases in measures of energy intensity (energy use per capita and energy use per unit value added), but less so than under the BAU scenario. Together with a declining average of take tariff – falling to 0.10 USD/kWh by 2020 (in line with current policy) – large consumers who formerly relied on isolated generation will switch to grid-based power, and there the need for back-up generation is diminished. At the same time, demand in manufacturing industry, residential and commercial demand will continue to grow quickly.

- Energy Efficiency and Renewables – The progress in energy efficiency technology deployment will lead to some increased energy efficiency. Similarly, renewable energy will make some headway in power generation within the city. Solar PV will be used as part of hybrid systems in some isolated manufacturing plants. For buildings with significant energy demands, particularly from cooling loads, solar PV will be increasingly common. Similarly, waste processing plants will seek to cover some of their own energy needs through waste-to-energy technologies.

- Transport management – Growth in transportation demand will be the most important driver of greater fossil fuel use. However, better public transport provision, better integration of land-use planning with road provision, the development of a more effective parking and traffic management systems will ease congestion despite increased transportation demand. Vehicle energy efficiency will also be improved overall with the implementation of a vehicle-testing regime.

- Water consumption – Structural drivers will also lead to rapidly increasing water demands. The introduction of more water efficient practices and processes in the manufacturing industry relative to the BAU will be an important contributor to relative reductions in water use.

- Local air pollution – Local air pollution will be significantly reduced relative to the BAU scenario, but increased substantially relative to current conditions. The improvements in the energy efficiency of the transport sector (referred to above) will contribute to these relative reductions.

- Water pollution – Given the relatively modest changes in water consumption relative to BAU, wastewater discharges will remain a challenge. Progress will be made on treatment plants for municipal waste-water, although this will be partial, and it is likely that discharges of untreated municipal wastewater will exceed what is currently the case.

- Solid waste – As with the BAU scenario, the overall volume solid waste will increase dramatically by 2025. Within districts serviced by the new waste reduction and collection regimes, solid waste is drastically reduced and remaining waste is collected efficiently. However, unregulated dumping

93 Yet to be adopted by the RGC.
will remain a problem, particularly in peri-urban areas, and the lack of adequate solid waste disposal in the form of sanitary land-fills – with knock-on implications for water quality.

This scenario represents significant improvement relative to BAU. In key areas which have a direct and visible impact on enterprises bottom-line such as transport and energy there are significant improvements over the BAU scenario. This in turn will result in lower levels of air pollution in particular. Moreover, spatial planning projects in several central districts will greatly improve the functionality of those areas, with reductions in speculative development, greater provision of public areas, protection of heritage, improved pedestrian environment and lowered local flooding risks. The local environment will be improved still further when coupled with interventions to improve solid waste collection. Broader initiatives affecting peri-urban areas to make provision for low income housing and industrial development will further improve the city’s functionality and environment. Nevertheless, air pollution levels are still likely to rise, and water and solid waste issues will remain a critical problem. Some uncontrolled development will continue unabated resulting in similar issues to those experienced in the BAU scenario. Overall, the city will see some environmental improvements which may allow it to remain competitive for low cost production and maintain its present national function at a larger scale.

7.3 MAINSTREAMING GREEN GROWTH SCENARIO

Under this scenario all sector plans and reforms identified in the “Piloting Green Growth” scenario are implemented, but also the city-wide scale up of the concrete pilot projects and sector wide reforms. This scenario includes sectoral reform to support for the adoption of electrical vehicles, improvement in transportation fuel standards, cross-sectoral support for renewable energy and energy efficiency, support for the implementation of wastewater treatment for municipal and manufacturing wastewater, effective solid waste reduction, collection and disposal, city-wide land-use zoning, the protection and enhancement of cultural heritage and the provision of public space and green areas. The changes projected under a “mainstreaming green growth” scenario for the city include:

- Energy consumption – As under other scenarios energy use will increase rapidly, although more aggressive energy efficiency policies and the promotion of renewable energy will result in lower demand for conventional energy relative to the BAU scenario. Electricity consumption is also likely to see rapid growth, although lower than BAU and PGG scenarios.

- Energy Efficiency and Renewables – There will be a higher penetration of renewable electricity generation. Despite falling average off-take tariffs rooftop solar PV will become ubiquitous. Uptake of solar PV will be driven by falling costs, the implementation of net metering and time-of-day pricing, and this will have a significant impact on daytime peak demand. Other renewable energy options such as waste-to-energy will be used widely in waste treatment facilities. Wide-scale adoption of energy efficiency measures will result in reduced energy demand from all sectors.

- Transport reforms – As in the other scenarios, growth in transportation demand will be significant and will remain the most important driver of greater fossil fuel use. As with the PGG scenario, energy efficiency in the transport sector will be improved relative to the BAU scenario. Electrical vehicles will make significant in-roads into the sector with support for electric bikes and solar tuk-tuks seeing their widespread adoption in the city and displacement of conventional technologies.

- Water consumption – Water use will continue to rise rapidly, although at a more moderate rate relative to BAU and PGG scenarios. Household water use is expected to grow with some moderation relative to alternative scenarios due to more widespread availability of energy (and water) efficient appliances.
- Local air pollution – Local air pollution will change in its composition and increase somewhat relative to the current situation but less than either BAU or PGG scenarios. Improvements will result from better road infrastructure, improved traffic management, vehicle emissions testing, improved transportation fuel standards, provision of public transport and lower levels of congestion. There will also be better enforcement of environmental protection standards in the manufacturing industry will significantly reduce air pollution from this sector.

- Water pollution – As with the other scenarios, water pollution emissions are likely to increase although this will be moderated due to efficiency measures more substantial than those realized in the PGG scenario. Greater progress will be made on wastewater treatment plants for municipal and manufacturing water emissions, as funds are made available for wastewater treatment facilities through a series of fees and fines for wastewater emissions.

- Solid waste – Under this scenario, solid waste production will increase relative to current conditions. However, citywide efforts to promote product repair, and the reuse, reduction and recycling of waste streams will reduce waste generation significantly relative to the other scenarios. The collection of solid waste under this scenario is managed effectively throughout the city, reducing air pollution from open burning and blockages of drainage culverts and drains from solid waste.

By 2026, pollution levels and resource usage will have increased dramatically. However, better traffic management, integrated land use planning, strict pollution control and energy efficiency regimes coupled with an expanded financing facility for environmental investments will lead to a gradual improvement in the living environment for most residents of the city. The functionality and competitiveness of the city will gradually improve. Aspirations to move up the value-chain will be enhanced. Better, more efficient infrastructure and service provision will make doing business easier and Phnom Penh will be able to attract more productive, higher value-added investment. A better living environment, public amenities and the protection of cultural heritage will make the city a much more attractive place to live and do business. These improvements will also enhance the city’s attractiveness to tourists. The adoption and diffusion of new green technologies in the city will also generate a market for high-tech infrastructure provision and manufacturing industries engaged in rapidly growing markets for green technologies, many of which may choose to locate in the city. Overall, a mainstreaming approach to green city development would not only enhance the local and national environment, but also enhance the prospects for long-term productivity gains and competitiveness for the city.
8 IMPLEMENTATION ARRANGEMENTS

An Advisory Board, and four Technical Working Groups shall be established to support Phnom Penh Capital Administration to effectively implement the strategic plan. The following section provides the detail description of the role and responsibilities of the Advisory Board and the Technical Working Groups.

Figure 19. Proposed implementation arrangements of the Phnom Penh Green City Strategic Plan

8.1 ADVISORY BOARD

The main role of an Advisory Board is to provide strategic advice and oversight on the implementation of the strategic plan. It aims to ensure that the vision is realized, the goals are met and the overall strategic plan is successfully implemented within the set time frame.

The Advisory Board will have the following responsibilities:

1. Provide strategic oversight and direction to the implementation of the strategic plan and ensure that the plan’s vision is realized, the goals are met and the overall strategic plan is successfully implemented by the end of the deadline
2. Appoint an officer(s) from their respective ministry to be members in one or more of the sector-based TWGs
3. Endorse and support the delivery of activities of PPCH
4. Meet regularly to review and monitor the implementation progress and achievement.

The Advisory Board shall consist of senior representatives from relevant ministries and government institutions. The Board will be chaired by National Council for Sustainable Development (NCSD) given its strong coordination experience among relevant line ministries and its role in green urban

There will be four sector-based TWGs under the Advisory Board to be set up to support the GUDP’s activities in 8 urban sectors. Each TWGs will responsible for two sectors. The Terms of Reference for each TWGs will also be developed accordingly.
development in Cambodia and the Vice Chair will be the Ministry of Interior, given its responsibility for sub-national level development planning.

8.2 TECHNICAL WORKING GROUP

The main objective of the TWGs is to support PPCA with the implementation of the strategic plan by providing technical advice and support in order to achieve the plan’s set goals. The roles and responsibilities of the TWG are as follows:

- Provide technical inputs for the implementation
- Produce short and medium term action plan for the respective sector
- Mobilize resources for the implementation of priority green city projects
- Monitor progress toward the green urban goals in the respective sector
- Produce annual progress report
- Report to PPCH on a regular basis.

PPCA will report to the Advisory Board on the progress made by the four TWGs.

The following four TWGs shall be established to lead the implementation of the eight sectors mentioned in the strategic plan.

1. TWG 1: Urban planning and transport. This TWG will cover topics such as land use planning, zoning, planning of new industrial zones and clusters, creation of urban land reserves for low-income housing, public transport, traffic management, vehicle control, air pollution, parking, etc.
2. TWG 2: Manufacturing and energy. Topics covered include renewable energy, energy efficiency, green manufacturing process, water use in SMEs and Special Economic Zone, etc.
3. TWG 3: Waste management and urban vulnerability. This TWG is responsible for leading the technical work on solid and liquid waste management, household sanitation, decentralized waste water facilities, flood prevention, drainage, etc.
4. TWG 4: Public space, culture heritage and built environment. Topic to be discussed in this TWG may include cultural heritage preservation and restoration, multi-functional recreational park, etc.

Phnom Penh Capital Administration, with the support of the NCSD, GGGI and other development partners, shall provide leadership and coordination among the four TWGs.

Members of each TWGs shall consists of technical representatives from PPCA’s relevant department, representatives of the 12 districts in Phnom Penh, relevant department of each ministry, development partners, NGOs and civil society, private sector and the academic partners working on relevant sector. Each TWG should have a chair and co-chair who will report the progress to PPCA.

8.3 FINANCIAL RESOURCES

Each TWG will propose a financial mobilization plan which lays out the resources needed to implement their activities and the strategy to get those resources. Possible funding sources include PPCA and line ministry budget, development partners (ADB, JICA, AFD, etc.), international funds (GEF and GCF) and the private sector investment.

The Cambodia Climate Change Alliance (CCCA)’s grant facilities are a potential source of funding. The grant, which is managed by the Climate Change Department, aims to support the implementation of the Cambodia Climate Change Strategic Plan (CCCSP) 2014-23, by providing support for catalytic
initiatives that will help leverage the required human, institutional and financial resources in the various sectors of the climate change response. Between 2011 and 2014, 20 demonstration projects led by Government agencies, universities and NGOs have been financed under two separate calls for proposals, for a total value of over USD 6 million. More information on how to apply is available in this website http://www.camclimate.org.kh/en/grant-facility/description.html.

Another funding source worth considering is the Global Environment Facilities (GEF)- administered Funds. The GEF provides support for activities that protect the global environment through the different trust funds it administers. The GEF’s Trust Fund is provided for activities in biological diversity, climate change mitigation, land degradation, international waters, and chemicals and waste. The Special Climate Change Fund (SCCF) finances adaptation and technology transfer in all developing country parties to the UNFCCC. It provides support for the additional cost of adaptation to generate measurable adaptation benefits. The Least Developed Countries Fund (LDCF) addresses the urgent and immediate adaptation needs of the 51 Least Developed Countries that are especially vulnerable to the adverse impacts of climate change. The Adaptation Fund supports adaptation projects and programs in developing countries that are Parties to the Kyoto Protocol and are particularly vulnerable to the adverse effects of climate change. More information on how to apply for these fund is available at https://www.thegef.org/gef/who_can_apply.

The Green Climate Fund (GCF) is the latest international funding mechanism that assist developing countries in adaptation and mitigation practices to counter climate change. The GCF supports projects, programs, policies and other activities in developing country Parties using thematic funding windows’. It is intended to be the centerpiece of efforts to raise Climate Finance of $100 billion a year by 2020. The GCF gives recipient countries access to funding through accredited national, sub-national and regional implementing entities and intermediaries. Countries can also access funding through accredited international and regional entities (such as multilateral and regional development banks and UN agencies) under international access. Some funds will be distributed through Enhanced Direct Access, in which developing country-based accredited institutions receive an allocation of GCF finance and then make their own decisions on how to program resources. In October 2016, the GCF approved USD 745 million in funding proposals. There are 10 projects and programmes which have a combined value of USD 2.6 billion, and will help 27 countries across the globe to reduce their emissions and adapt to the impacts of climate change. The projects and programmes are mainly about adaptation (52%), cross-cutting (22%), and mitigation (26%). More information about the Fund is available here http://www.greenclimate.fund/home.

8.4 Monitoring and Evaluation

The implementation of the Green City Strategic Plan and List of Priority Green City Projects will be subject to rigorous monitoring and evaluation. In additional to the annual monitoring, there will also be mid-term evaluation to be carried out in 2020 and end of implementation evaluation in 2026. As part of the annual monitoring, each TWG will be requested to submit a report to PPCA which outlines the progress and challenges in the implementation of the priority actions, projects and resource mobilization. PPCA will then compile all the TWG’s findings and produce a consolidated report for the Advisory Board. The mid-term and end-of-term evaluation process could be conducted by an external consultant, under the direction of PPCA. The results of the monitoring and evaluation will be also made publicly accessible.

GGGI. 2014b. Cambodia Private Sector Analysis - Green Growth Opportunities Perspective.

ICEM and ECA. 2013. Baseline Report - Ensuring Sustainability of GMS Regional Power Development. Consultancy report prepared for the ADB.

Nara, H. Undated. “Regulations of the Building Regulations and Codes”. PowerPoint presentation by MLMUPC.

OpenStreetMap. 2015. URL: https://www.openstreetmap.org/#map=5/51.500/-0.100.

People in Need Cambodia and UNICEF. Undated. Multiple Indicator Assessment of the Urban Poor. URL: http://www.unicef.org/cambodia/PIN_URBAN_POOR_FA.PDF.

People in Need Cambodia. 2015. Urbanising Disaster Risk, Vulnerability of the Urban Poor in Cambodia to Flooding and Other Hazards.

Annex A: List of Stakeholders Consulted

<table>
<thead>
<tr>
<th>National Government</th>
<th>NGOs and Academic Institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>• National Council for Sustainable Development (NCSD)</td>
<td>• Nexus</td>
</tr>
<tr>
<td>• Ministry of Economy and Finance (MEF)</td>
<td>• GERES</td>
</tr>
<tr>
<td>• Ministry of Interior (MOI)</td>
<td>• Cambodian Institute for Urban Studies</td>
</tr>
<tr>
<td>• Ministry of Planning (MOP)</td>
<td>• NGO Forum</td>
</tr>
<tr>
<td>• Ministry of Land Management, Urban Planning and Construction (MLMUPC)</td>
<td>• The Asia Foundation</td>
</tr>
<tr>
<td>• Ministry of Environment (MOE)</td>
<td>• People in Need</td>
</tr>
<tr>
<td>• Ministry of Public Works and Transport (MPWT)</td>
<td>• WWF</td>
</tr>
<tr>
<td>• Ministry of Industry and Handicrafts (MOIH)</td>
<td>• Heinrich Böll Foundation</td>
</tr>
<tr>
<td>• Ministry of Mines and Energy (MME)</td>
<td>• Royal University of Phnom Penh</td>
</tr>
<tr>
<td>• Ministry of Water Resources and Meteorology (MOWRAM)</td>
<td>• SNV</td>
</tr>
<tr>
<td>• Ministry of Women’s Affairs (MOWM)</td>
<td>• Samakum Theang Tnaut</td>
</tr>
<tr>
<td>• Ministry of Tourism (MOT)</td>
<td>• Enrich Institute</td>
</tr>
<tr>
<td>• Ministry of Commerce</td>
<td>• IGES</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Local Government in Phnom Penh</th>
<th>Development Partners and Private Sector</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Phnom Penh Capital Hall</td>
<td>• Cambodia Climate Change Alliance</td>
</tr>
<tr>
<td>• Khan Chamkar Morn</td>
<td>• Asian Development Bank</td>
</tr>
<tr>
<td>• Khan Daun Penh</td>
<td>• UNDP</td>
</tr>
<tr>
<td>• Khan 7 Makara</td>
<td>• UN Habitat</td>
</tr>
<tr>
<td>• Khan Toul Kork</td>
<td>• USAID</td>
</tr>
<tr>
<td>• Khan Dong Kor</td>
<td>• KOICA</td>
</tr>
<tr>
<td>• Khan Mean Chey</td>
<td>• European Union</td>
</tr>
<tr>
<td>• Khan Russey Keo</td>
<td>• Japanese International Cooperation Agency</td>
</tr>
<tr>
<td>• Khan Sen Sok</td>
<td>• World Bank</td>
</tr>
<tr>
<td>• Khan Por Sen Chey</td>
<td>• GIZ</td>
</tr>
<tr>
<td>• Khan Chbar Ampov</td>
<td>• Department of Foreign Affairs and Trade</td>
</tr>
<tr>
<td>• Khan Chroy Chang Var</td>
<td>• Agence Francaise Development</td>
</tr>
<tr>
<td>• Khan Prek Pnov</td>
<td>• UNIDO</td>
</tr>
<tr>
<td></td>
<td>• UNESCO</td>
</tr>
<tr>
<td></td>
<td>• UNCDF</td>
</tr>
<tr>
<td></td>
<td>• KFW</td>
</tr>
<tr>
<td></td>
<td>• WaterAid</td>
</tr>
<tr>
<td></td>
<td>• International Finance Corporation</td>
</tr>
<tr>
<td></td>
<td>• EuroCham Green Biz</td>
</tr>
</tbody>
</table>